a.c./d.c. current monitoring in 1-phase mains

Monitoring relays - GAMMA series
Multifunction
16.6 to 400 Hz

Fault latch
Supply voltage selectable via power modules
1 change-over contact
Width 22.5 mm
Industrial design

Technical data

1. Functions

a.c./d.c. current monitoring in 1-phase mains with adjustable thresholds, timing for start-up suppression and tripping delay separately adjustable, fault latch and the following functions which are selected by means of rotary switch:

OVER	Overcurrent monitoring
UNDER	Undercurrent monitoring
WIN	Monitoring the window between Min and Max

2. Time ranges

Start-up suppression time:
Tripping delay:
Adjustment range
Os $\quad 10 \mathrm{~s}$
0.1s $\quad 10 \mathrm{~s}$
3. Indicators

Green LED ON: Green LED flashes: Yellow LED ON/OFF:
Red LED ON/OFF:
Red LED flashes:
indication of supply voltage indication of start-up suppression time indication of relay output indication of failure of the corresponding threshold indication of tripping delay of the corresponding threshold

4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40
Mounted on DIN-Rail TS 35 according to EN 60715
Mounting position: any
Shockproof terminal connection according to VBG 4 (PZ1 required),
IP rating IP20
Tightening torque: max. 1Nm
Terminal capacity:
1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end
2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end
5. Input circuit

Supply voltage:

$$
12 \text { to } 400 \mathrm{~V} \text { a.c. }
$$

Tolerance:
Rated frequency:
Rated consumption: Duration of operation:
Reset time:
Residual ripple for d.c. :
Drop-out voltage:
Overvoltage category:
Rated surge voltage:
terminals A1-A2 (galvanically separated) selectable via power modules TR2 according to specification of power module according to specification of power module 2VA (1.5W)
100\%
500 ms
$>30 \%$ of the supply voltage
III (in accordance with IEC 60664-1) 4 kV

6. Output circuit

1 potential free change-over contact
Rated voltage: $\quad 250 \mathrm{~V}$ a.c.
Switching capacity: $\quad 750 \mathrm{VA}(3 \mathrm{~A} / 250 \mathrm{~V}$ a.c.)
If the distance between the devices is less than 5 mm .
Switching capacity: 1250VA (5A / 250V a.c.)
If the distance between the devices is more than 5 mm .

Fusing:
Mechanical life:
Electrical life:
Switching frequency:

Overvoltage category:
Rated surge voltage:
7. Measuring circuit

Measured variable:
Input:
20 mA a.c./d.c.
1A a.c./d.c
5A a.c./d.c
Overload capacity: 20 mA a.c./d.c
1 A a.c./d.c
5A a.c./d.c
Input resistance:
$20 \mathrm{~mA} \quad$ a.c./d.c $\quad 2.7 \Omega$
1 A a.c./d.c $\quad 47 \mathrm{~m} \Omega$
5A a.c./d.c $10 \mathrm{~m} \Omega$
Switching threshold:
Max
Min
Overvoltage category:
Rated surge voltage:
8. Control contact Y (equipotential with measuring circuit)

Function:
Loadable:
Line length $\mathrm{Y} 1-\mathrm{Y} 2$:
Control pulse length:
Reset:
9. Accuracy

Base accuracy:
Frequency response:
Adjustment accuracy:
Repetition accuracy:
Voltage influence:
Temperature influence: $\leq 0.05 \% /{ }^{\circ} \mathrm{C}$
10. Ambient conditions

Storage temperature: -25 to $+70^{\circ} \mathrm{C}$
Transport temperature: -25 to $+70^{\circ} \mathrm{C}$
Relative humidity: $\quad 15 \%$ to 85%
Pollution degree: $\quad 3$ (in accordance with IEC 60664-1)
Vibration resistance: 10 to 55 Hz 0.35 mm

Shock resistance:
10% to 100% of I_{N}
5% to 95% of I_{N}
III (in accordance with IEC 60664-1)
4kV
fault latch (Y1-Y2 bridged)

Ambient temperature: $\quad-25$ to $+55^{\circ} \mathrm{C}$ (in accordance with IEC 60068-1) -25 to $+40^{\circ} \mathrm{C}$ (in accordance with UL 508)
(in accordance with IEC 60721-3-3 class 3K3)
(in accordance with IEC 60068-2-6)
5A fast acting
20×10^{6} operations
2×10^{5} operations at 1000VA resistive load max. $60 / \mathrm{min}$ at 100VA resistive load max. $6 / \mathrm{min}$ at 1000 VA resistive load (in accordance with IEC 60947-5-1) III (in accordance with IEC 60664-1) 4 kV
d.c. or a.c. Sinus (16.6 to 400 Hz)
terminals K-I1(+)
terminals K-I2(+)
terminals K-I3(+)
250mA
3A
10A

No
max. 10m (twisted pair)
normally closed contact in the input circuit
$\leq 3 \%$ (of maximum scale value)
-10% to $+5 \%$ (16.6 to 400 Hz)
$\leq 5 \%$ (of maximum scale value)
$\leq 2 \%$

15 g 11 ms (in accordance with IEC 60068-2-27)

Functions

When the supply voltage U is applied, the output relay switches into on-position (yellow LED illuminated) and the set interval of the start-up suppression (START) begins (green LED U flashes). Changes of the measured current during this period do not affect the state of the output relay. After the interval has expired the green LED is illuminated steadily. For all the functions the LEDs MIN and MAX are flashing alternating, when the minimum value for the measured current was chosen to be greater than the maximum value.

Overcurrent monitoring (OVER)

When the measured current exceeds the value adjusted at the MAXregulator, the set interval of the tripping delay (DELAY) begins (red LED MAX flashes). After the interval has expired (red LED MAX illuminated), the output relay switches into off-position (yellow LED not illuminated). The output relay again switches into on-position (yellow LED illuminated), when the measured current falls below the value adjusted at the MIN-regulator (red LED MAX not illuminated).
If the fault latch is activated (bridge $\mathrm{Y} 1-\mathrm{Y} 2$) and the measured current remains above the MAX-value longer than the set interval of the tripping delay, the output relay remains in the off-position even if the measured current falls below the value adjusted at the MIN-regulator. After resetting the failure (interrupting and re-applying the supply voltage), the output relay switches into on-position and a new measuring cycle begins with the set interval of the start-up suppression (START).

Undercurrent monitoring (UNDER)
When the measured current falls below the value adjusted at the MINregulator, the set interval of the tripping delay (DELAY) begins (red LED MIN flashes). After the interval has expired (red LED MIN illuminated), the output relay switches into off-position (yellow LED not illuminated). The output relay again switches into on-position (yellow LED illuminated), when the measured current exceeds the value adjusted at the MAX-regulator.
If the fault latch is activated (bridge $\mathrm{Y} 1-\mathrm{Y} 2$) and the measured current remains below the MIN-value longer than the set interval of the tripping delay, the output relay remains in the off-position even if the measured current exceeds the value adjusted at the MAX-regulator. After resetting the failure (interrupting and re-applying the supply voltage), the output relay switches into on-position and a new measuring cycle begins with the set interval of the start-up suppression (START).

Window function (WIN)

The output relay switches into on-position (yellow LED illuminated) when the measured current exceeds the value adjusted at the MIN-regulator. When the measured current exceeds the value adjusted at the MAXregulator, the set interval of the tripping delay (DELAY) begins (red LED MAX flashes). After the interval has expired (red LED MAX illuminated), the output relay switches into off-position (yellow LED not illuminated). The output relay again switches into on-position (yellow LED illuminated) when the measured current falls below the value adjusted at the MAXregulator (red LED MAX not illuminated). When the measured current falls below the value adjusted at the MIN-regulator, the set interval of the tripping delay (DELAY) begins again (red LED MIN flashes). After the interval has expired (red LED MIN illuminated), the output relay switches into off-position (yellow LED not illuminated).

If the fault latch is activated (bridge $\mathrm{Y} 1-\mathrm{Y} 2$) and the measured current remains below the MIN-value longer than the set interval of the tripping delay, the output relay remains in the off-position even if the measured current exceeds the value adjusted at the MIN-regulator. If the measured current remains above the MAX-value longer than the set interval of the tripping delay, the output relay remains in the off-position even if the measured current falls below the value adjusted at the MAX-regulator. After resetting the failure (interrupting and re-applying the supply voltage), the output relay switches into on-position and a new measuring cycle begins with the set interval of the start-up suppression (START).

Connections

Range 20 mA with power modul 24 V a.c. and fault latch

Range 1 A with power modul 230 V a.c. and fault latch

Range 5A with power modul 400V a.c. without fault latch

Dimensions

