

METAL OXIDE FILM FIXED RESISTORS

Features

- High safety standard, high purity ceramic core
- Excellent non-flame coating, non-inductive type available
- Stable performance in diverse environment, meet EIAJ-RC2655A requirements
- Too low or too high ohmic value can be supplied on a case to case basis

Ordering Procedure: (Ex.: MOR 1/2W, +/-5%, 100Ω, T/B-1000)															
Μ	0	R	0	W	2	J	0	1		0	1	Α	1	0	
Resis MOR Watta Normal Small s Extra si	Resistor Type: MOR = Metal Oxide Film Fixed Resistors Special Feature: 0 = Standard Product I = Non-Inductive Wattage: Normal size: W4=1/4W, W2=1/2W, 1W=1W, 2W=2W, 3W=3W, 5W=5W, 7W=7W, 8W=8W, 9W=9W Small size: S2=1/2W-S, 1S=1W-S, 2S=2W-S, 3S=3W-S, 5S=5W-S, Extra small size: 5I = 5W-SS						Resista • E-24 s 2 nd & figure the 4 "J" ~ Ex. 4 • E-96 s are si and ti of zer Ex. 1	ance rd series: 3^{rd} digi es of the th indica 0.1, "K" .7 $\Omega \sim 4$ series: ignifica he 4 th o ros. .33 K Ω	Value: the 1 st dig its are for e resistar ate the nu ~ 0.01 .7J, 4.7K The 1 st to nt figures ne denot = 1331	ligit is "0", the or the significant ince and number of zeros: $\zeta \Omega \sim 472$ to 3 rd digits is of resistance otes number					
Tolerance: A = Tape / Box G = ±2%, J = ±5%, K = ±10% T = Tape / Reel * More explanation on part no, please see details on pages 79-80. Packing Qty: * More explanation on part no, please see details on pages 79-80. Packing Qty: * More explanation on part no, please see details on pages 79-80. Packing Qty: * Dependence Specifications 1 = 1,000 pcs, 2 = 2,000 pcs, 5 = 5,000 p											py packing				
	Temperature coefficient ± 250 DM/°C								J Duik / D	ox packing.					
	S	hort-time o	time overload Normal size: $\Delta R/R < +(1.0\% + 0.050)$ with no evidence of mechanical damage												
Small size: ∆R/R ≤ ±(2.0%							0.05 Ω), with no evidence of mechanical damage.							nal	
Diel	Dielectric withstanding voltage No evidence of flashover, mec						anical dama	age, arc	ing or ins	ulation	ı breakdowi	n.	0 = PT-5	tion: 2 mm,	
	Pulse overload Normal size: ∆R/R ≤ ±(2.0% + 0.						0.05Ω), wit	th no ev	/idence o	f mecl	hanical dar	nage.	NIL f	or PT-26	
	Small size: ∆R/R ≤ ±(5.0						+ 0.05 Ω), with no evidence of mechanical damage. $9 = PT-64$							4 mm	
	Terminal strength No evidence of mechanical damage.							0	7 = Lead (H=3	wire 8mm)					
R	esistance	e to solderi	ing heat	$\Delta R/R \le \pm (1.0\% + 0.05\Omega)$, with no evidence of mechanical damage.										,	
		Sold	erability	Min. 95% coverage											
	Res	istance to	solvent	No deterioration of protective coating and markings.											
	Те	mperature	cycling	$\Delta R/R \le \pm (2.0\% + 0.05\Omega)$, with no evidence of mechanical damage.											
	Humidity (Steady state) $\Delta R/R \le \pm (2.0\% + 0.05\Omega)$, with no evidence of mechanical damage.														
Load life in humidity $\Delta R/R \le \pm 5\%$ for <100K Ω ; ±10							% for ≥ ±100KΩ								
Load life $\Delta R/R \le \pm 5\%$ for <100K Ω ; ±10)KΩ; ±10%	% for ≥ ±100KΩ								
Non-Flame No evidence of flaming or arcir							g. *More details, please see pages 77-							<i>77-78.</i>	

2006 - 2007

METAL OXIDE FILM FIXED RESISTORS

Norma	al Size										
Part No.	Style	Power Rating at 70°C		Dimensi	ion (mm)	_	Max.	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range	
			D Max.	L Max.	H ± 3	d ± 0.05	Working Voltage				
MOR0W4	MOR-25	1/4VV (0.25VV)	2.5	7.5	28	0.54	250V	400V	250V	0.3Ω~50ΚΩ	
MOR0W2	MOR-50	1/2W (0.5W)	3.5	10.0	28	0.54	250V	400V	250V	0.3Ω~50ΚΩ	
MOR01W	MOR-100	1W	5.0	12.0	28	0.70	350V	600V	350V	0.3Ω~50ΚΩ	
MOR02W	MOR-200	2W	5.5	16.0	28	0.70	350V	600V 350V		0.3Ω~50ΚΩ	
MOR03W	MOR-300	3W	6.5	17.5	28	0.75	500V	800V	500V	5Ω ~ 100ΚΩ	
MOR05W	MOR-500	5W	8.5	26.0	38	0.75	750V	1,000V	750V	5Ω ~ 150ΚΩ	
MOR07W	MOR-700	7W	8.5	32.0	38	0.75	750V 1,000V 750V		750V	20Ω ~ 150ΚΩ	
MOR08W	MOR-800	8W	8.5	41.0	38	0.75	750V	1,000V	750V	30Ω ~ 200ΚΩ	
MOR09W	MOR-900	9W	8.5	54.0	38	0.75	750V	1,000V	750V	50Ω~200ΚΩ	

Small Size

Part No.	Style	Power Rating at 70°C		Dimensi	ion (mm)		Max.	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range
			D Max.	L Max.	H ± 3	d ± 0.05	Working Voltage			
MOR0S2	MOR-50-S	1/2W (0.5W)	2.5	7.5	28	0.54	250V	400V	250V	0.3Ω~50ΚΩ
MOR01S	MOR-100-S	1W	3.5	10.0	28	0.54	350V	600V	350V	0.3Ω~50ΚΩ
MOR02S	MOR-200-S	2W	5.0	12.0	28	0.70	350V	600V	350V	0.3Ω~50ΚΩ
MOR03S	MOR-300-S	3W	5.5	16.0	28	0.70	350V	600V	350V	0.3Ω~50ΚΩ
MOR05U	MOR-500-SS	5W	6.5	17.5	28	0.75	500V	500V 800V 500V		5Ω ~ 100ΚΩ
MOR05S	MOR-500-S	5W	8.0	25.0	38	0.75	500V	800V	500V	5Ω~150ΚΩ

Note: • Standard E-24 series values in ±5% tolerance

Standard gray base color for normal size product; sea blue color for small size product

- Standard Non-flammable coating
- Non-Inductive type available on a case to case basis

Derating Curve

