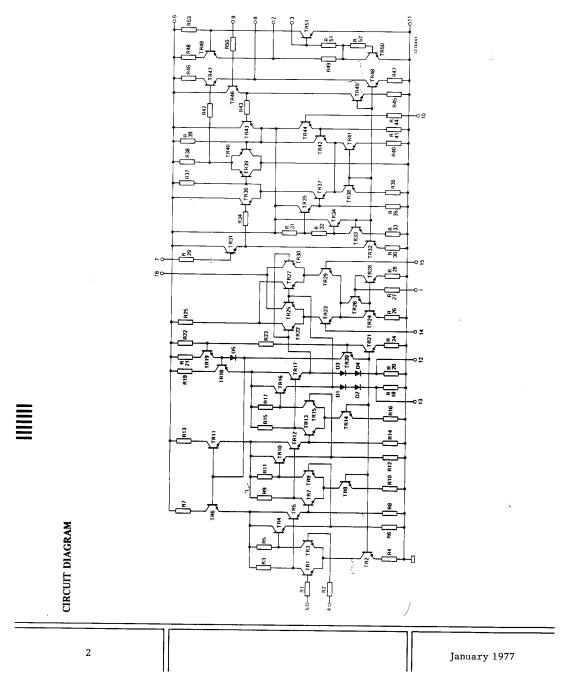

FM LIMITER/DEMODULATOR

The TDA2730 is a monolithic integrated circuit for use in audio-visual equipment, e.g.: video recorders and video disc players.

The circuit comprises an f.m. limiter/demodulator for the playback signal, a video amplifier and an electronic switch, which can be used for drop-out elimination.

QUICK REFERENCE DATA						
Supply voltage	V ₆₋₁₁	typ.	12	V		
Supply current	16	typ.	42	mA		
Input signal range (peak-to-peak value)	V _{4-5(p-p)}	30 to 2000		mV		
Video output signal (peak-to-peak value)	V _{2-11(p-p)}	typ.	4	v		

BLOCK DIAGRAM



PACKAGE OUTLINE

16-lead DIL: plastic (SOT-38).

January 1980	£ 12 1
January 1700	J 7 7 1
l i	

This Material Copyrighted By Its Respective Manufacturer

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage

Supply voltage

V₆₋₁₁ max.

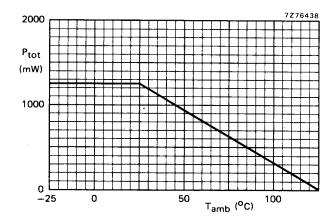
13 V

 $^{\circ}$ C

Power dissipation

Total power dissipation (see also derating curve below)

Ptot max. 1,25 W


Temperatures

Storage temperature

 $T_{\mbox{stg}}$ -65 to +125

Operating ambient temperature

see derating curve below

CHARACTERISTICS measured in the circuit on page	ge 7 (Fig. 1)			
Supply voltage range	V ₆₋₁₁	typ. 11	12 to 13	V V
The following characteristics are measured at V_{ℓ}	5-11 = 12 V; T _{am}	b = 25 G	C	
Supply current	¹ 6	typ. 25	42 to 54	mA mA
Limiter				
Start of limiting (-3 dB) f _O = 4 MHz; peak-to-peak value	V _{4-5(p-p)}	typ.	0, 8	v
Input signal range for constant luminance output (peak-to-peak value)	V _{4-5(p-p)}	30 t o	2000	mV
Output voltage (peak-to-peak value)	V _{12-13(p-p)}	typ.	750	mV
Available output voltage at an external load of 1 $k\Omega;$ peak-to-peak value	V _{12-13(p-p)}	>	5	v
Demodulator				
Measured at I $_1$ = 4 mA; $\left Z_{16-11}\right $ = 1,5 k Ω ; delay (f $_L$ = 3,0 MHz, f $_H$ = 4,4 MHz)	time τ = 64 ns; Δ	f = 1, 4	MHz	
Current ratio	I ₁ /I ₁₆	typ.	1	
Output voltage (peak-to-peak value)	v ₁₆₋₁₁	typ.	540	mV
Drop-out switch				
Input drive voltage range	V _{7;9-11}	6, 5	to 12	v
Voltage drop between input and output for signal flow from pin 7 to pin 8 for signal flow from pin 9 to pin 8	V ₇₋₈ V ₉₋₈	typ. typ.	1,5 1,5	V V
Input offset voltage	$ v_{7-8}-v_{9-8} $	<	20	mV
Switch actuating input voltage for signal flow from pin 7 to pin 8 for signal flow from pin 9 to pin 8	V ₁₀₋₁₁ V ₁₀₋₁₁	0 to 3,7 to	2,7	v v

 z_{8-11}

emitter follower

Output impedance at 1,5 mA by internal load

CHARACTERISTICS (continued)

Video amplifier

Immut males are level				
Input voltage level	v_{3-11}	typ.	730	mV
Output voltage level	v_{2-11}	typ.	5 , 5	V
Open loop gain	G	typ.	43	dB
Bandwidth (3 dB)	В	typ.	8,8	MHz
Output voltage (peak-to-peak value; see note)	$v_{2-11(p-p)}$	typ.	4	V

Note

The gain of the amplifier is determined by the feedback network comprising the impedances between pins 2 and 3, and pins 8 and 3. The values quoted apply to the circuit on page 7 (Fig. 1).

PINNING

- 1. Current setting demodulator
- 2. Video amplifier output
- 3. Video amplifier input
- 4. F.M. signal input
- 5. F.M. signal input
- 6. Positive supply
- 7. Switch input
- 8. Switch output

- 9. Switch input
- 10. Switch actuating input
- 11. Negative supply (ground)
- 12. Limiter output
- 13. Limiter output
- 14. Demodulator input
- 15. Demodulator input
- 16. Demodulator output

APPLICATION INFORMATION

The function is quoted against the corresponding pin number

1. Current setting of demodulator

The current into this pin directly determines the amplitude and the d.c. level of the demodulator output. At $I_1 = 4$ mA, optimum temperature compensation is obtained.

2. Video amplifier output

A signal up to 4 V peak-to-peak is available from this output (Fig. 1). This can be the video signal (Fig. 1) or the f.m. signal to the delay line (drop-out elimination; Fig. 2).

3. Video amplifier input

The demodulator output signal is the input signal to this pin (Fig. 1) or the f.m. modulated signal (Fig. 2).

4. F.M. signal input (in conjunction with pin 5)

A frequency modulated signal of 1 V peak-to-peak is applied between pins 4 and 5. D.C. feedback from the limiter output is applied to stabilize the operation.

5. F.M. signal input

See pin 4.

January 1977

5

APPLICATION INFORMATION (continued)

6. Positive supply

Correct operation can be obtained in the range 11 to 13 V.

7. Switch input

The signal applied to pin 7 or to pin 9 is transferred to pin 8, depending on the switch position. For an input level between 0 and 2.7 V at pin 10, the signal at pin 7 is transferred to pin 8, and when between 3.7 and 6 V the input signal at pin 9 is transferred to pin 8.

The signal at pin 7 or pin 9 may vary from 6,5 to 12 V.

The signal at pin 8 is 1,5 V below the value at pin 7 or 9.

The difference in input level at pins 7 and 9, to obtain equal output at pin 8, will be less than $20~\mathrm{mV}$.

8. Switch output

See pin 7.

9. Switch input

See pin 7.

10. Switch actuating input

See pin 7.

11. Negative supply (ground)

12. Limiter output

A balanced signal is available between pins 12 and 13. The signal amplitude is limited to $750~\mathrm{mV}$ at both outputs.

13. Limiter output

See pin 12.

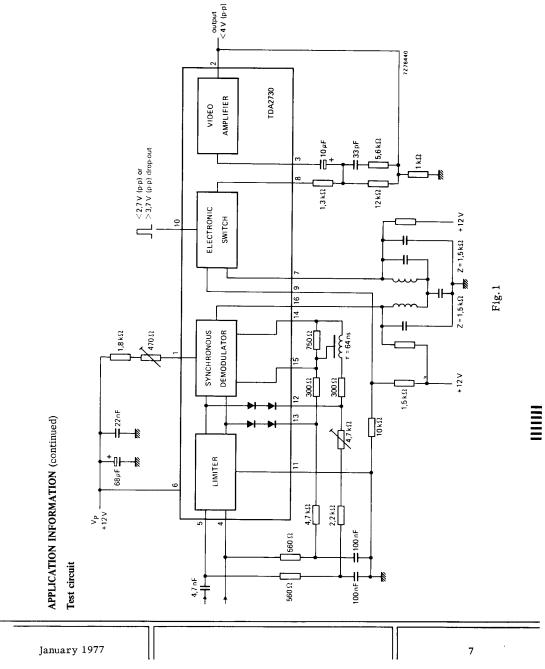
14. Demodulator input

A phase shifted signal (with respect to the internally applied signal) is applied between pins 14 and 15.

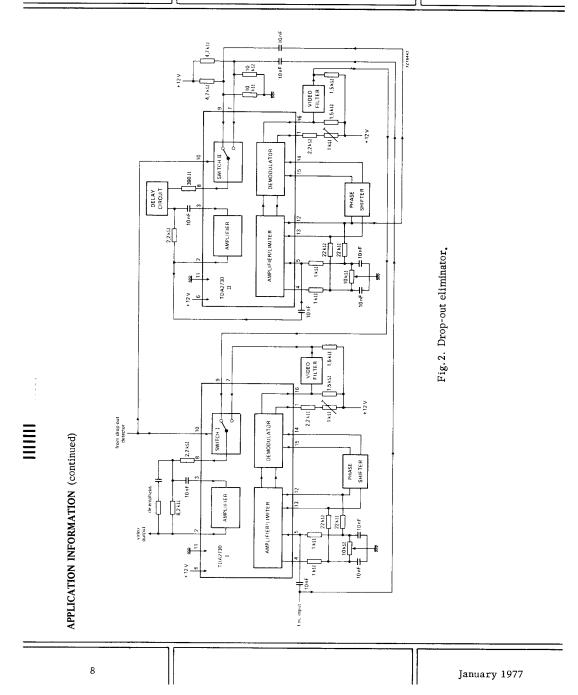
15. Demodulator input

See pin 14.

16. Demodulator output


The output signal is proportional to:

- current into pin 1
- slope of the phase characteristic of the network between pins 12 and 13, and pins 14 and 15
- impedance level at the output
- the sweep (Δf) of the f.m. signal.


A signal of typically 540 mV is available at this pin when using the component values in Fig. 1 and Δf = 1,4 MHz.

6

January 1977

This Material Copyrighted By Its Respective Manufacturer

