# T54LS273 T74LS273



## **8-BIT REGISTER WITH CLEAR**

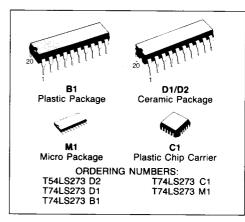
#### DESCRIPTION

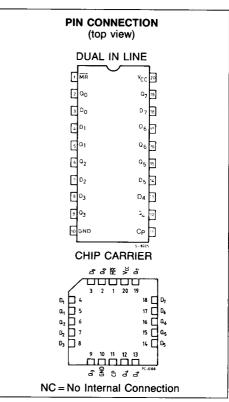
The T54LS273/T74LS273 is a high speed 8-Bit Register. The register consists of eight D-Type Flipflops with a Common Clock and an asynchronous active LOW Master Reset. This device is supplied in a 20-pin package featuring 0.3 inch lead spacing.

- 8-BIT HIGH SPEED REGISTER
- PARALLEL REGISTER
- COMMON CLOCK AND MASTER RESET
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

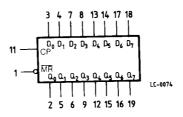
#### TRUTH TABLE

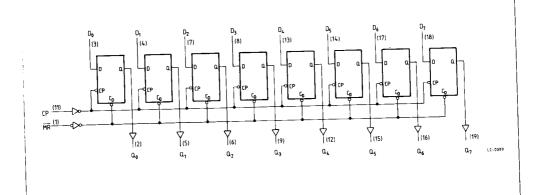
| MR | СР | D <sub>x</sub> | Q <sub>x</sub> |
|----|----|----------------|----------------|
| L  | ×  | ×              | L              |
| Н  |    | н              | н              |
| н  |    | L              | L              |


H = High Logic Level


L = Low Logic Level

X = Don't Care


## PIN NAMES


|                                | <u> </u>                             |
|--------------------------------|--------------------------------------|
| СР                             | Clock (Active HIGH Going Edge) Input |
| D <sub>0</sub> -D <sub>7</sub> | Data Inputs                          |
| MR                             | Master Reset (Active LOW) Input      |
| Q <sub>0</sub> -Q <sub>7</sub> | Register Outputs                     |





# LOGIC SYMBOL AND LOGIC DIAGRAM





# **FUNCTIONAL DESCRIPTION**

The LS273 is an 8-Bit Parallel Register with a common Clock and common Master Reset. When the MR is LOW, the Q output are LOW, independent of the other inputs. Information meeting

the set-up and hold time requirements of the D inputs is transferred to the Q outputs on the LOW-to-HIGH transition of the clock input.



### **ABSOLUTE MAXIMUM RATINGS**

| Symbol                                    | Parameter                         | Value      | Unit |
|-------------------------------------------|-----------------------------------|------------|------|
| V <sub>CC</sub>                           | Supply Voltage                    | -0.5 to 7  | V    |
| VI                                        | Input Voltage, Applied to Input   | -0.5 to 15 | V    |
| Vo                                        | Output Voltage, Applied to Output | -0.5 to 10 | V    |
| I <sub>I</sub> Input Current, Into Inputs |                                   | -30 to 5   | mA   |
| lo                                        | Output Current, Into Outputs      | 50         | mA   |

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### **GUARANTEED OPERATING RANGES**

| Part Numbers |        | Supply Voltage |        |                 |  |  |  |
|--------------|--------|----------------|--------|-----------------|--|--|--|
|              | Min    | Тур            | Max    | Temperature     |  |  |  |
| T54LS273D2   | 4.5 V  | 5.0 V          | 5.5 V  | -55°C to +125°C |  |  |  |
| T74LS273XX   | 4.75 V | 5.0 V          | 5.25 V | 0°C to +70°C    |  |  |  |

XX = package type.

## DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

| Symbol                            | Parameter                          |        | Values |                    |           | Test Conditions                                                |                                                             |          |
|-----------------------------------|------------------------------------|--------|--------|--------------------|-----------|----------------------------------------------------------------|-------------------------------------------------------------|----------|
| Symbol                            |                                    |        | Min.   | Тур.               | Max.      | (Note 1)                                                       |                                                             | Units    |
| V <sub>IH</sub>                   | Input HIGH Voltage                 |        | 2.0    |                    |           | Guaranteed input HIGH Voltage for all Inputs                   |                                                             | V        |
| V <sub>IL</sub> Input LOW Voltage |                                    | 54     |        |                    | 0.7       | Guaranteed input LOW Voltage                                   |                                                             | v        |
|                                   |                                    | 74     |        | 0.8 for all Inputs |           |                                                                |                                                             |          |
| V <sub>CD</sub>                   | Input Clamp Diode Vo               | Itage  |        | - 0.65             | - 1.5     | V <sub>CC</sub> = MIN,I <sub>IN</sub> = -18mA                  |                                                             | V        |
| V <sub>OH</sub> Outp              | Output HIGH Voltage                | 54     | 2.5    | 3.4                |           | $V_{CC} = MIN, I_{OH} = -400\mu A, V_{IN} = V_{IH} C$          |                                                             | <b>T</b> |
|                                   |                                    | 74     | 2.7    | 3.4                |           | V <sub>IL</sub> per Truth                                      |                                                             | \ \ \    |
| V <sub>OL</sub>                   | OL Output LOW Voltage 54           | 54,74  |        | 0.25               | 0.4       | I <sub>OL</sub> = 4.0mA                                        | V <sub>CC</sub> = MIN, V <sub>IN</sub> = V <sub>IH</sub> or | v        |
|                                   |                                    | 74     |        | 0.35               | 0.5       | I <sub>OL</sub> = 8.0mA                                        | V <sub>IL</sub> per Truth Table                             |          |
| l <sub>IH</sub>                   | Input HIGH Current                 |        |        |                    | 20<br>0.1 | $V_{CC} = MAX, V_{IN} = 2.7V$<br>$V_{CC} = MAX, V_{IN} = 7.0V$ |                                                             | μA<br>mA |
| l <sub>IL</sub>                   | Input LOW Current                  |        |        |                    | -0.4      | V <sub>CC</sub> = MAX,V <sub>IN</sub> = 0.4V                   |                                                             | mA       |
| los                               | Output Short Circuit C<br>(Note 2) | urrent | - 20   |                    | - 100     | V <sub>CC</sub> = MAX, V <sub>OUT</sub> = 0V                   |                                                             | mA       |
| lcc                               | Supply Current                     |        |        | 17                 | 27        | V <sub>CC</sub> = MAX                                          |                                                             | mA       |

#### Notes:

- 1) Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
- 2) Not more than one output should be shorted at a time.
- 3) Typical values are at  $V_{CC} = 5.0V$ ,  $T_A = 25$ °C



# AC CHARACTERISTICS: TA = 25°C

| Symbol<br>'고내<br>'커L | Parameter  Propagation Delay, Clock to Output |      | Limits   |          |        | Test Conditions        |       |
|----------------------|-----------------------------------------------|------|----------|----------|--------|------------------------|-------|
|                      |                                               | Min. | Тур.     | Max.     | Ī      | Test Collutions        | Units |
|                      |                                               |      | 17<br>18 | 27<br>27 | Fig. 1 |                        | ns    |
| :AIL                 | Propagation Delay, MR to Q Output             |      | 18       | 27       | Fig. 1 | V <sub>CC</sub> = 5.0V | ns    |
| 'WAX                 | Maximum Input Clock<br>Frequency              | 30   | 40       |          | Fig. 2 |                        | MHz   |

## AC SET-UP REQUIREMENTS: TA = 25°C

| Symbol           |                                             | Limits |      |      | Test Conditions |                        | Units  |
|------------------|---------------------------------------------|--------|------|------|-----------------|------------------------|--------|
|                  | Parameter                                   | Min.   | Тур. | Max. |                 | rest Conditions        | Office |
|                  | Minimum Clock Pulse Width                   | 20     |      |      | Fig. 1          |                        | ns     |
| ts               | Set-up Time, Data to Clock<br>(HIGH or LOW) | 20     |      |      | Fig. 1          |                        | ns     |
| th               | Hold Time, Data to Clock<br>(HIGH or LOW)   | 5      |      |      | Fig. 1          | V <sub>CC</sub> = 5.0V | ns     |
| t <sub>rec</sub> | Recovery Time                               | 25     |      |      | Fig. 2          |                        | пѕ     |
| twMR             | Minimum MR Pulse Width                      | 20     |      |      | Fig. 2          |                        | ns     |

#### **DEFINITION OF TERMS:**

SET-UP TIME  $(t_s)$  - is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.

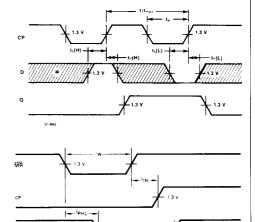
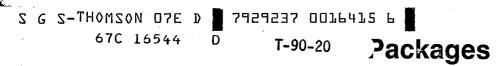
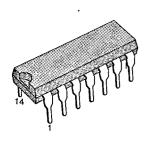
HOLD TIME (th) - is defined as the minimum time following the clock transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW to HIGH and still be recognized.

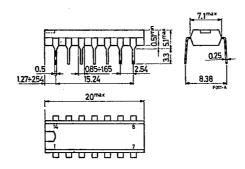
RECOVERY TIME (t<sub>rec</sub>) - is defined as the minimim time required between the end of the reset pulse and the clock transition from LOW to HIGH in order to recognize and transfer HIGH Data to the Q outputs.



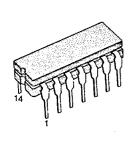
## **AC WAVEFORMS**

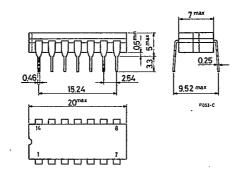
Fig. 1 Clock to Output Delays, Clock Pulse Width, Frequency, Set-Up and Hold Times Data to Clock

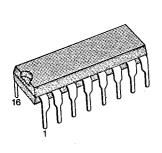


Fig. 2 Master Reset to Output Delay, Master Reset Pulse Width, and Master Reset Recovery Time

\* The shaded areas indicate when the input is permitted to change for predictable output performance.

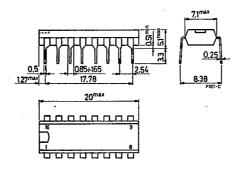




# 14-LEAD PLASTIC DIP

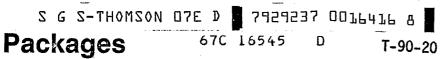





## 14-LEAD CERAMIC DIP

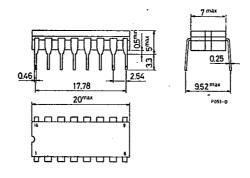




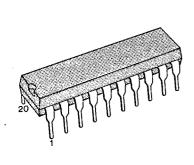


## 16-LEAD PLASTIC DIP

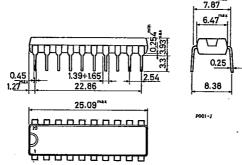


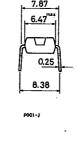
A-13



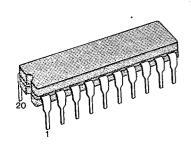

0606

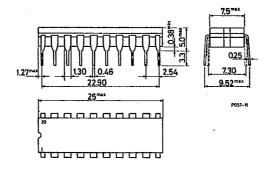




16-LEAD CERAMIC DIP



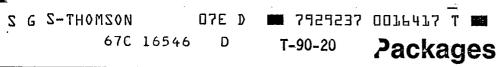




# **20-LEAD PLASTIC DIP**

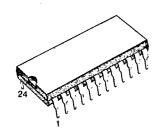


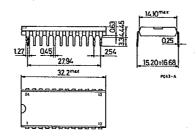




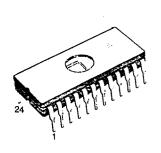


# **20-LEAD CERAMIC DIP**

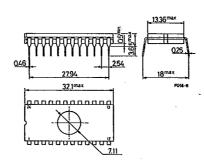






0607

A-14

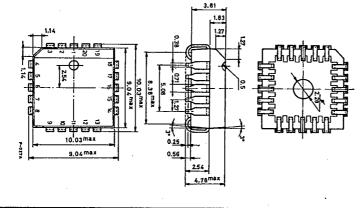




# 24-LEAD PLASTIC DIP





## 24-LEAD CERAMIC DIP






# CHIP CARRIER 20 LEAD PLASTIC

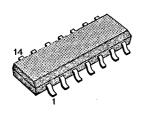


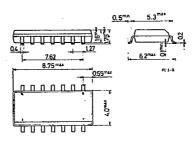
0608



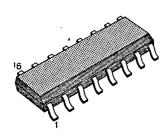
B-01

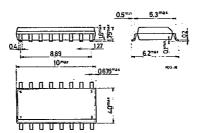
NOZMOHT-Z D Z


07E D 7929237 0016418 1


**Packages** 

67C 16547


T-90-20


14-LEAD PLASTIC DIP MICROPACKAGE





16-LEAD PLASTIC DIP MICROPACKAGE





NOTE: FOR 20-LEAD PLASTIC DIP MICROPACKAGE CONTACT SGS

# **Surface Mounted**

67C 16548

T-90-20

One possible solution to the important problem of PWB minimization, is that of using surface mounted components. Integrated circuits in SO (Small Outline) packages are made up of standard chips mounted in very small plastic packages.

The advantages given by using these devices are:

#### **PWB Reduction**

This is by far the most important advantage since the reduction of PWB size varies from 40 to 60% in comparison with standard board types. (See page 584 for package dimensions.)

## **Assembly Cost Reduction**

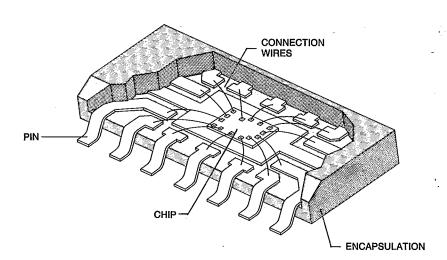
SO Devices require no preliminary operation prior to mounting and can therefore be easily utilized in fully automatic equipment.

#### Increasing Reliability

The following characteristics lead to a higher level of reliability with respect to their standard packaged counter parts:

- The mounting system is fully automatic

D


- PWB number and the interconnections between them are reduced when the same number of devices are used.
- The high density of components on the board makes it thermally much more stable.

## Noise Reduction and Improved Frequency Response

The reduction of the length of the connecting wires between the leads and the silicon guarantees a more homogeneous propogation delay between the external pins, with respect to the standard type.

#### Assembly Without Board Holes

The devices are placed on the board and soldered. This technology permits a higher level of tolerance in the positioning (automatic) of the device. For the standard DIP types this must be done with great accuracy due to the insertion of the leads into their holes.

