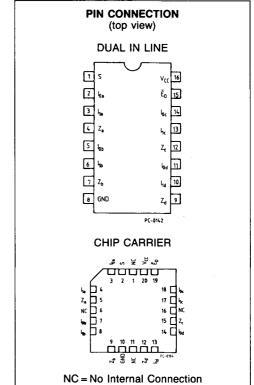
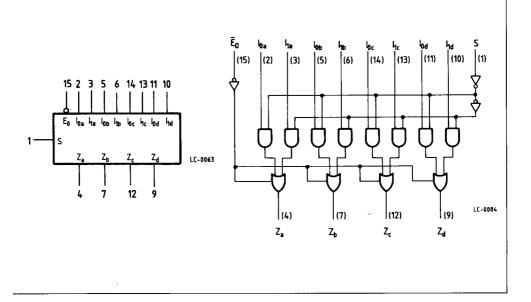


QUAD 2-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

DESCRIPTION


The LSTTL/MSI T54LS257/257A, T74LS257/257A is a Quad 2-Input Multiplexer with 3-state outputs. Four bits of data from two sources can be selected using a Common Data Select input. The four outputs present the selected data in true (non-inverted) form. The outputs may be switched to a high impedance state with a HIGH on the common Outputs Enable (\overline{E}_0) Input, allowing the outputs to interface directly with bus oriented systems. It is fabricated with the Scottky barrier diode process for high speed and is completely compatible with all SGS TTL families.

- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIPLEXER EXPANSION BY TYING OUTPUTS TOGETHER
- NON-INVERTING 3 STATE OUTPUTS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE
- VERSION "A" PRELIMINARY DATA


PIN NAMES

S	Common Select Input
Ē0	Output Enable (Active LOW) Input
I _{0a} -I _{0d}	Data Inputs from Source 0
I _{1a} -I _{1d}	Data Inputs from Source 1
Z _a -Z _d	Multiplexer Output

LOGIC SYMBOL AND LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to 7	v
VI	Input Voltage, Applied to Input	- 0.5 to 5.5	v
Vo	Output Voltage, Applied to Output	- 0.5 to 5.5	V
	Input Current, Into Inputs	- 30 to 5	mA
lo	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGES

D		Supply Voltage	Tomo anatura	
Part Numbers	Min	Тур	Max	Temperature
T54LS257/257AD2	4.5 V	5.0 V	5.5 V	- 55°C to + 125°C
T74LS257/257AXX	4.75 V	5.0 V	5.25 V	0°C to +70°C

XX = package type.

FUNCTIONAL DESCRIPTION

The LS257/257A is a Quad 2-Input Multiplexer with 3-state outputs. It selects four bits of data from two sources under control of a Common Data Select Input. When the Select Input is LOW, the I₀ inputs are selected and when Selected is HIGH, the I₁ inputs are selected. The data on the selected inputs

$$Z_{a} = \overline{E}_{0} \bullet (I_{1a} \bullet S + I_{0a} \bullet \overline{S})$$
$$Z_{c} = \overline{E}_{0} \bullet (I_{1c} \bullet S + I_{0c} \bullet \overline{S})$$

When the Output Enable Input (\overline{E}_0) is HIGH, the outputs are forced to a high impedance "off" state. If the outputs are tied together, all but one device must be in the high impedance state to avoid

appear at the outputs in true (non-inverted) form. The LS257 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select Input. The Logic equations for outputs are show below:

$$Z_b = \overline{E}_0 \bullet (I_{1b} \bullet S + I_{0b} \bullet \overline{S})$$

$$Z_d = \overline{E}_0 \bullet (I_{1d} \bullet S + I_{0d} \bullet \overline{S})$$

high currents that would exceed the maximum ratings. Designers shoud ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so there is no overlap.

TRUTH TABLE

OUTPUT ENABLE	SELECT INPUT	DATA INPUTS		OUTPUTS
Ē	S	Ι _Ο	l ₁	Z
Н	x	x	x	(Z)
L	. н	х	L	L
L	н	x	н	н
L	L	L	х	L
L	L	н	х	н

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

(Z) = High impedance (off)

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (T54LS/T74LS257)

Sumbol	Parameter		Limits			Test Conditions		Units
Symbol			Min.	Тур.	Max.		(Note 1)	Units
•́н			2.0			Guaranteed input HIGH Voltage for all Inputs		
• L	Input LOW Voltage	54 74			0.7	Guaranteed input LOW Voltage for all Inputs		v
√CD	Input Clamp Diode Vo			- 0.65	- 1.5	V _{CC} = MIN,I _{IN}	= - 18mA	v
<u>-он</u>	Output HIGH Voltage	54	2.4	3.4			V _{CC} = MIN, V _{IN} = V _{IH} or	
		74	2.4	3.1			VIL per Truth Table	V
Vol	Output LOW Voltage	54,74		0.25	0.4	I _{OL} = 4mA	$V_{CC} = MIN, V_{IN} = V_{IH}$ or	
		74		0.35	0.5	I _{OL} = 8mA	VIL per Truth Table	V
OZH	Output Off Current HIGH				20	V _{CC} = MAX, V	$V_{OUT} = 2.7V, V_{\overline{E}} = 2.0V$	μΑ
OZL	Output Off Current LOW				- 20	$V_{CC} = MAX, V_{OUT} = 0.4V, V_{\overline{E}} = 2.0V$		μA
ы	Input HIGH Current \overline{E}_0 , I_{0x} , I_{1x} S				20 40	V _{CC} = MAX, V _{IN} = 2.7V		μΑ
	Input HIGH Current at Max Input Voltage \overline{E}_0 , I_{0x} , I_{1x} S				0.1 0.2	V _{CC} = MAX, V	/ _{IN} = 7.0V	mA
IL.	Input LOW Current Ē ₀ , I _{0x} , I _{1x} S				- 0.4 - 0.8	V _{CC} = MAX, V	′′ _{IN} = 0.4V	mA
os	Output Short Circuit Current (Note 2)		- 20		- 100	$V_{CC} = MAX, V_{OUT} = 0V$		mA
сс	Power Supply Current Outputs HIGH Power Supply Current Outputs LOW				10	V _{CC} = MAX, V	$V_{\rm IN} = 4.5 V, \ V_{\rm E} = 0 V$	mA
					16	V _{CC} = MAX, V	$V_{\rm IN} = 0V, \ V_{\rm \overline{E}} = 0V$	mA
	Power Supply Current Outputs Off				17	$V_{CC} = MAX, V_{IN} = 0V, V_{\overline{E}} = 4.5V$		mA

Notes:

1) Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.

2) Not more than one output should be shorted at a time.

3) Typical values are at $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (T54LS/T74LS257A)

Symbol	Parameter		Limits			Test Conditions			
Symbol	Faiai	Falameter		Min.	Тур.	Max.	1	(Note 1)	Units
V _{IH}	Input HIGH Voltage		2.0			Guaranteed input HIGH Voltage for all Inputs		V	
V _{IL}	Input LOW Vol	tage	54			0.7		Guaranteed input LOW Voltage	
		74				0.8	for all Inputs	for all Inputs	
V _{CD}	Input Clamp D	iode Vo	Itage		0.65	- 1.5	V _{CC} = MIN,I _{IN}	= - 18mA	V
V _{OH}	Output HIGH V	/oltage	54	2.4	3.4		I _{OH} = − 1.0mA	$V_{CC} = MIN, V_{IN} = V_{IH}$ or	l v
• <u></u>			74	2.4	3.1		I _{OH} = -2.6mA	V _{IL} per Truth Table	
V _{OL}	Output LOW V	oltage	54,74		0.25	0.4	I _{OL} = 12mA	$V_{CC} = MIN, V_{IN} = V_{IH}$ or	
			74		0.35	0.5	I _{OL} = 24mA	VIL per Truth Table	V
lozh	Output Off Current HIGH				20	$V_{CC} = MAX, V_{OUT} = 2.7V$		μA	
lozi	Output Off Current LOW				20	V _{CC} ≈MAX, V _{OUT} =0.4V		μA	
Iн	Input HIGH Current	Other S Inp	r Inputs outs			20 40	V _{CC} = MAX, V	IN = 2.7V	μA
	Other Inputs S Input					0.1 0.2	V _{CC} = MAX, V _{IN} = 7.0V		mA
l _{ιL}	Input LOW Current	1				- 0.4 - 0.8	$V_{CC} = MAX, V_{IN} = 0.4V$		mA
los	Output Short Circuit Current (Note 2)		- 30		- 130	V _{CC} = MAX		mA	
lcc	Power Supply Current Total, Output HIGH Total, Output LOW Total, Output 3-State					10 16 19	V _{CC} = MAX		mA

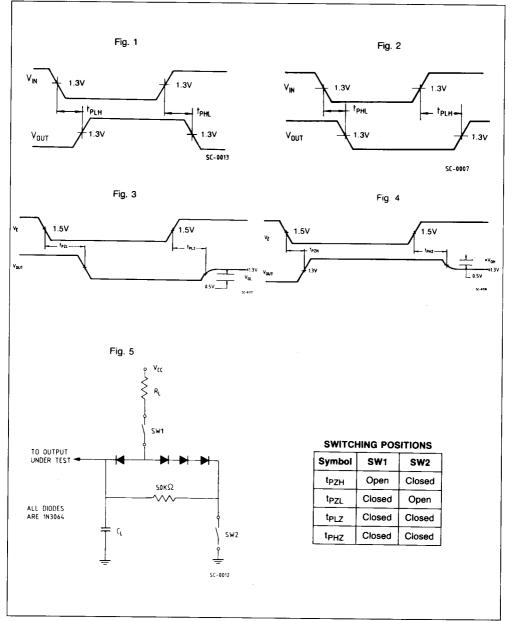
Notes:

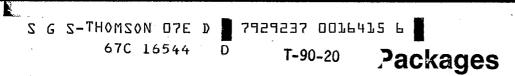
1) Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.

2) Not more than one output should be shorted at a time.

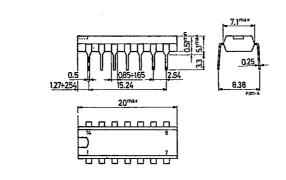
3) Typical values are at $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$

AC CHARACTERISTICS: $T_A = 25$ °C (T54LS/T74LS257)

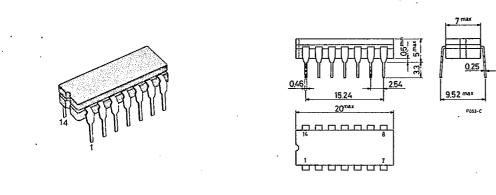

	B	Limits				Test Conditions		
	Parameter	Min.	Тур.	Max.	lest	onations	Units	
	Propagation Delay, Data to Output			18 14	Fig. 1	- C ₁ = 15pF	ns	
 ':¤LH ':¤нL	Propagation Delay, Select to Output			21 21	Fig. 1		ns	
₽ZH	Output Enable Time to HIGH Level			28	Figs. 4,5	C _L = 15pF R _L = 2 kΩ	ns	
ŀ₽ZL	Output Enable Time to LOW Level			24	Figs. 3,5		ns	
t _{PLZ}	Output Disable Time from LOW Level			22	Figs. 3,5	C _L = 5pF	ns	
^t PHZ	Output Disable Time from HIGH Level			14	Figs. 4,5	$R_L = 2 k\Omega$	ns	

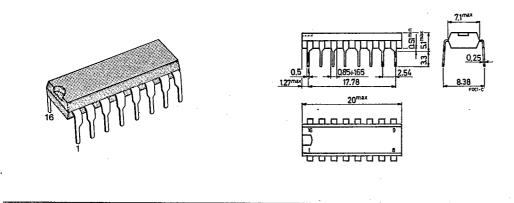

AC CHARACTERISTICS: $T_A = 25^{\circ}C$ (T54LS/T74LS257A)

Symbol ^t PLH ^t PHL	D		Limits		Test Conditions		Units
	Parameter	Min.	Тур.	Max.	rest (Jonations	Units
	Propagation Delay, Data to Output	· · · · · · · · · · · · · · · · · · ·	18 18	Fig. 1		ns	
tpLH tpHL	Propagation Delay, Select to Output		16 19	21 25	Fig. 1	V _{CC} = 5.0V - C _L = 45pF R _L = 667 Ω	ns
^t PZH	Output Enable Time to HIGH Level		17	30	Figs. 4,5		ns
t _{PZL}	Output Enable Time to LOW Level		17	30	Figs. 3,5		ns
t _{PLZ}	Output Disable Time from LOW Level		15	25	Figs. 3,5	V _{CC} = 5.0V C _L = 5pF	ns
t _{PHZ}	Output Disable Time from HIGH Level		17	30	Figs. 4,5		ns



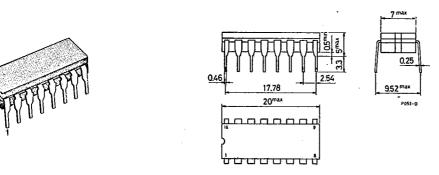
WAVEFORMS




14-LEAD PLASTIC DIP

14-LEAD CERAMIC DIP

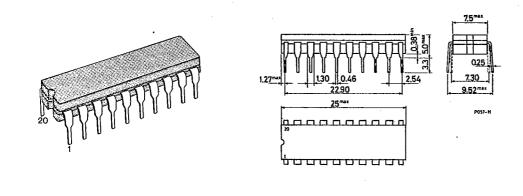
16-LEAD PLASTIC DIP



0606 A-13 581

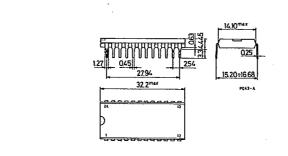
S G S-THOMSON D7E D 7929237 0016416 8 Packages 67C 16545 D T-90-20

16-LEAD CERAMIC DIP


L.

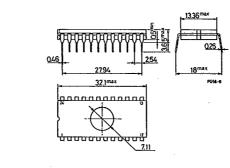
20-LEAD PLASTIC DIP

20-LEAD CERAMIC DIP

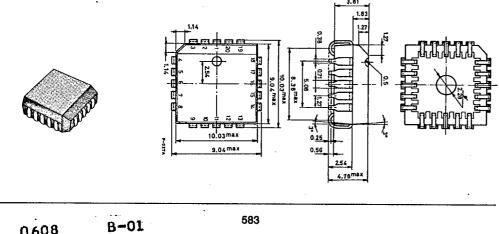


0607 A-14

582


1 S G S-THOMSON 07E D 7929237 0016417 T 67C 16546 D T-90-20 **Packages**

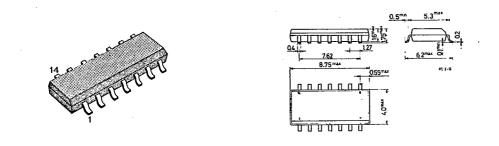
24-LEAD PLASTIC DIP



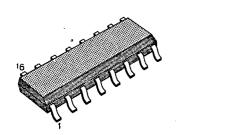
24-LEAD CERAMIC DIP

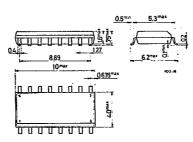
24

CHIP CARRIER 20 LEAD PLASTIC


8060

583


S G S-THOMSON 07E D 🗰 7929237 0016418 1 🖿 Packages 67C 16547


D T-90-20

14-LEAD PLASTIC DIP MICROPACKAGE

16-LEAD PLASTIC DIP MICROPACKAGE

NOTE: FOR 20-LEAD PLASTIC DIP MICROPACKAGE CONTACT SGS

0609

B-02

584

S G S-THOMSON D7E D 7929237 0016419 3

Surface Mounted

67C 16548 D

One possible solution to the important problem of PWB minimization, is that of using surface mounted components. Integrated circuits in SO (Small Outline) packages are made up of standard chips mounted in very small plastic packages.

The advantages given by using these devices are:

PWB Reduction

This is by far the most important advantage since the reduction of PWB size varies from 40 to 60% in comparison with standard board types. (See page 584 for package dimensions.)

Assembly Cost Reduction

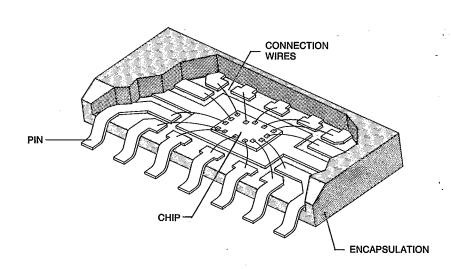
SO Devices require no preliminary operation prior to mounting and can therefore be easily utilized in fully automatic equipment.

Increasing Reliability

The following characteristics lead to a higher level of reliability with respect to their standard packaged counter parts:

- The mounting system is fully automatic
- PWB number and the interconnections between them are reduced when the same number of devices are used.

T-90-20


- The high density of components on the board makes it thermally much more stable.

Noise Reduction and Improved Frequency Response

The reduction of the length of the connecting wires between the leads and the silicon guarantees a more homogeneous propogation delay between the external pins, with respect to the standard type.

Assembly Without Board Holes

The devices are placed on the board and soldered. This technology permits a higher level of tolerance in the positioning (automatic) of the device. For the standard DIP types this must be done with great accuracy due to the insertion of the leads into their holes.

