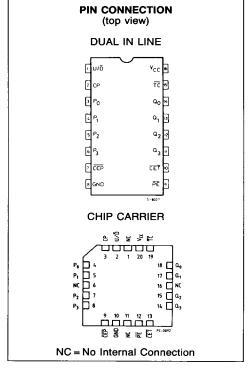


SYNCHRONOUS BI-DIRECTIONAL COUNTERS LS168-BCD DECADE LS169-MODULO 16 BINARY

DESCRIPTION


The T54LS/T74LS168 and T54LS/T74LS169 are fully synchronous 4-stage up/down counters featuring a present capability for programmable operation, carry lookahead for easy cascading and a U/\overline{D} input to control the direction of counting. The T54LS/T74LS168 counts in a BCD decade (8, 4, 2, 1) sequence, while the T54LS/T4LS169 operates in a Modulo 16 binary sequence. All state changes, whether in counting or parallel loading, are initiated by the LOW-to-HIGH transition of the clock.

- B1 D1/D2
 Plastic Package Ceramic Package

 M1 C1
 Micro Package Plastic Chip Carrier
 ORDERING NUMBERS:
 T54LSXXX D2 T74LSXXX C1
 T74LSXXX D1 T74LSXXX M1
- LOW POWER DISSIPATION 100mW TYPICAL
- HIGH SPEED COUNT FREQUENCY 30MHz TYPICAL
- FULLY SYNCHRONOUS OPERATION
- FULL CARRY LOOKAHEAD FOR EASY CASCADING
- SINGLE UP/DOWN CONTROL INPUT
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE
- POSITIVE EDGE-TRIGGER OPERATION

PIN NAMES

CEP	Count Enable Parallel (Active LOW) Input
CET	Count Enable Trickle (Active LOW) Input
CP	Clock Pulse (Active positive going edge) Input
PE	Parallel Enable (Active LOW) Input
U/D	Up-Down Count Control Input
P ₀ -P ₃	Parallel Data Inputs
Q ₀ -Q ₃	Flip-Flop Outputs
TC	Terminal Count (Active LOW) Output

MODE SELECT TABLE

PE	CEP	CET	U/D	Action on Rising Clock Edge
L H	X L L	X L L	X H L	Load (Pn → Qn) Count Up (increment) Count Down (decrement)
H	H X	X H	X X	No Change (Hold) No Change (Hold)

H = HIGH Voltage Level

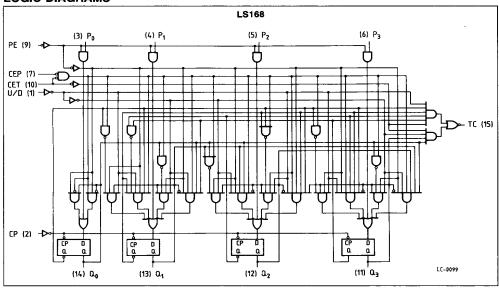
L = LOW Voltage Level

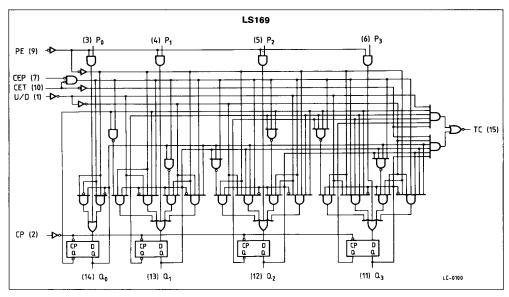
X = Don't Care

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to 7	٧
VI	Input Voltage, Applied to Input	-0.5 to 15	V
Vo	Output Voltage, Applied to Output	-0.5 to 10	٧
l _l	Input Current, Into Inputs	-30 to 5	mA
lo	Output Current, Into Outputs	50	mA

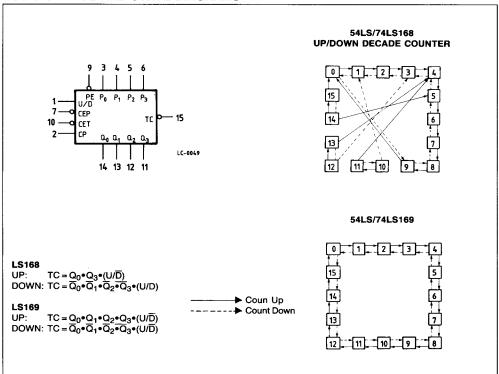
Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


GUARANTEED OPERATING RANGES


Part Numbers		T			
	Min	Тур	Max	Temperature	
T54LS168/169D2	4.5 V	5.0 V	5.5 V	- 55°C to +125°C	
T74LS168/169XX	4.75 V	5.0 V	5.25 V	0°C to +70°C	

XX = package type.

LOGIC DIAGRAMS



299

LOGIC SYMBOL AND STATE DIAGRAMS

FUNCTIONAL DESCRIPTION

The LS168 and LS169 use edge-triggered D-type flip-flops and have no constraints on changing the control or data input signals in either state of the Clock. The only requirement is that the various inuputs attain the desired state at least a set-up time before the rising edge of the clock and remain valid for the recommended hold time thereafter. The parallel load operation takes precedence over the other operation, as indicated in the Mode Select Table. When PE is LOW, the data on the P₀-P₃ inputs enters the flip-flops on the next rising edge of the Clock. In order for counting to occur, both CEP and CET must be LOW an PE must be HIGH. The U/D input then determines the direction of counting.

The terminal count (TC) output is normally HIGH and goes LOW, provided that CET is LOW, when a counter reaches zero in the COUNT DOWN mode or reaches 15 (9 for the T54LS/T74LS168) in the COUNT UP mode. The TC output state is not a function of the Count Enable Parallel (CEP) input level. The TC output of the LS168 decade counter can also be LOW in the illegal states 11.13 and 15, which can occur when power is turned on or via parallel loading. If an illegal state occurs, the LS168 will return to the legitmate sequence within two counts. Since the TC signal is derived by decoding the flip-flop states, there exsist the possibility of decoding to spikes on TC. For this reasons the use of TC as a clock signal is not recommended.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

	_		Limits			Test Conditions		11-14-
Symbol	Parameter	Min.	Тур.	Max.	(Note 1)		Units	
V _{IH}	Input HIGH Voltage		2.0			Guaranteed input HIGH Volt for all Inputs	nput HIGH Voltage	٧
V _{IL}	Input LOW Voltage	54			0.7	Guaranteed input LOW Voltage for all Inputs		V
		74			0.8			
V _{CD}	Input Clamp Diode Vo	Itage		- 0.65	- 1.5	$V_{CC} = MIN, I_{IN} = -18mA$		V
V _{OH}	Output HIGH Voltage	54	2.5	3.5		V_{CC} = MIN, I_{OH} = -400μ A, V_{IN} = V_{IH} or V_{IL} per Truth Table		V
		74	2.7	3.5				
V _{OL}	Output LOW Voltage	54,74		0.25	0.4	I _{OL} = 4.0mA	$V_{CC} = MIN, V_{IN} = V_{IH}$ or	
		74		0.35	0.5	$I_{OL} = 8.0 \text{mA}$	V _{IL} per Truth Table	
1 _{ін}	H Input HIGH Current U/D, CP, CEP, P ₀ -P ₃ , PE CET				20 40	V _{CC} = MAX,V	_{IN} = 2.7V	μΑ
	U/D, CP, CEP, P ₀ -P	3, PE			0.4 0.2	7 114		mA
l _{IL}	Input LOW Current U/D, CP, CEP, P ₀ -P ₃ , PE CET				- 0.4 - 0.8	$V_{CC} = MAX, V_{1N} = 0.4V$		mA
los	Output Short Circuit Current (Note 2)		-20		- 100	V _{CC} = MAX, V _{OUT} = 0V		mA
lcc	Power Supply Current			20	34	V _{CC} = MAX		mA

AC CHARACTERISTICS: TA = 25°C

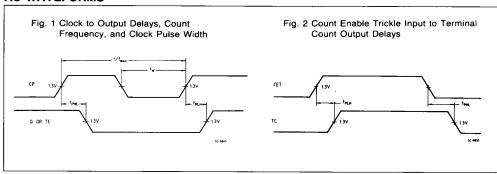
Symbol t _{PLH} t _{PHL}	B	Limits			Test Conditions		Units
	Parameter CP to Q	Min.	Typ. 15 15	Max.	rest Conditions		Units
				20 20	Fig. 1		ns
t _{PLH}	CP to TC		22 22	30 30	Fig. 3	V _{CC} = 5.0V	ns
t _{PLH}	CET to TC		10 15	15 20	Fig. 2	C _L = 15pF	ns
t _{PLH}	U/D to TC		20 20	25 25	Fig. 6		ns
f _{MAX}	Maximum Clock Frequency	25	32		Fig. 1		MHz

Notes:

- 1) Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
- 2) Not more than one output should be shorted at a time.
- 3) Typical values are at $V_{CC} = 5.0V$, $T_A = 25$ °C

301

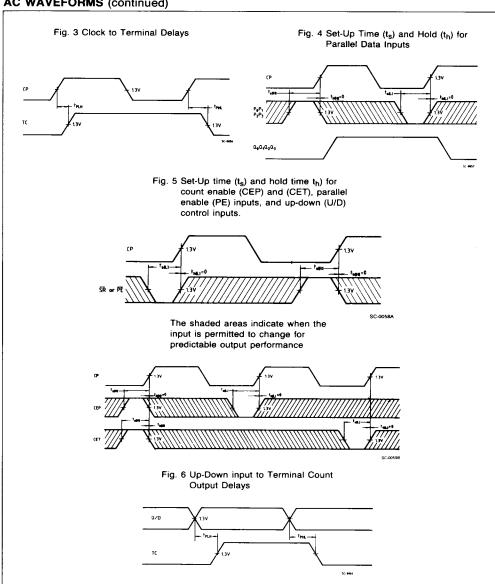
AC SET-UP REQUIREMENTS: TA = 25°C


O	Douann at au	Limits			Test Conditions		
Symbol	Parameter	Min. Typ.		Max.	i es	Units	
t _S (L) t _S (H)	Set-Up LOW, Data to CP Set-Up HIGH, Data to CP	15 15	12 12		Fig. 4		ns
t _h (L) t _h (H)	Hold LOW, Data to CP Hold HIGH, Data to CP	5.0 5.0	0		Fig. 4		ns
t _s (L) t _s (H)	Set-Up LOW, PE to CP Set-Up HIGH, PE to CP	15 15	12 12		Fig. 5		ns
t _h (L) t _h (H)	Hold LOW, PE to CP Hold HIGH, PE to CP	5.0 5.0	0		Fig. 5		ns
t _s (L)	Set-Up LOW, CET or CEP to CP Set-Up HIGH, CET or CEP to CP	15 15	12 12		Fig. 5	V _{CC} = 5.0V	ns
t _h (L)	Hold LOW, CET or CEP to CP Hold HIGH, CET or CEP to CP	15 15	12 12		Fig. 5		ns
t _s (L)	Set-Up LOW, U/D to CP Set-Up HIGH, U/D to CP	25 25	20 20		Fig. 6	_	ns
t _h (L) t _h (H)	Hold LOW, U/D to CP Hold HIGH, U/D to CP	0	~ 4.0 - 4.0		Fig. 6		ns
t _W CP(L) t _W CP(H)	Clock Pulse Width LOW Clock Pulse Width HIGH	20 10	18 5.0		Fig. 1		ns

DEFINITION OF TERMS:

SET-UP TIME (t_s) - is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.

HOLD TIME (t_h) - is defined as the minimum time following the clock transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW to HIGH and still be recognized.


AC WAVEFORMS

302

AC WAVEFORMS (continued)

