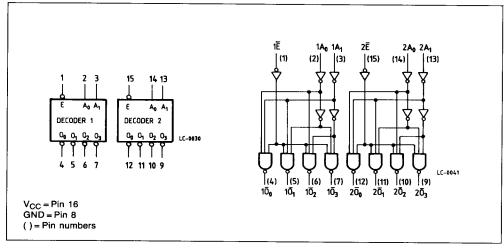

DUAL 1-OF-4 DECODER

DESCRIPTION

The T54LS139/T74LS139 is a high speed Dual 1-of-4 Decoder/Demultiplexer. This device has two independent decoders, each accepting two inputs and providing four mutually exclusive active LOW outputs. Each decoder has an active LOW Enable input which can be used as a data input for a 4-output demultiplexer. Each half of the LS139 can be used as a function generator providing all four minterms of two variables. The LS139 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all SGS TTL families.

- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIFUNCTION CAPABILITY
- TWO COMPLETELY INDEPENDENT 1-OF-4 DECODERS
- ACTIVE LOW MUTUALLY EXCLUSIVE OUTPUTS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE



PIN NAMES

A ₀ -A ₁	Address Inputs
Ē	Enable (Active LOW) Input
\overline{O}_0 - \overline{O}_3	Active LOW Outputs

LOGIC SYMBOL AND LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	- 0.5 to 7	V
V _I	Input Voltage, Applied to Input	-0.5 to 15	V
v _o	Output Voltage, Applied to Output	-0.6 to 10	v
l _l	Input Current, Into Inputs	-30 to 5	mA
lo	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGES

Part Numbers		_			
	Min	Тур	Max	Temperature	
T54LS139D2	4.5 V	5.0 V	5.5 V	-55°C to +125°C	
T74LS139XX	4.75 V	5.0 V	5.25 V	0°C to +70°C	

XX = package type.

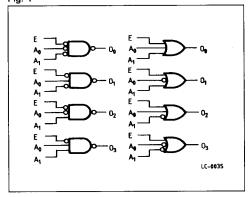
FUNCTIONAL DESCRIPTION

The LS139 is a high speed dual 1-of-4 Decoder/Demultiplexer fabricated with the Schottky barrier diode process. The device has two independent decoders, each of which accept two binary weighted inputs (A_0 - A_1) and provide four mutually exclusive active LOW outputs $(\overline{O}_0$ - \overline{O}_3). Each decoder has an active LOW Enable (\overline{E}). When \overline{E} is HIGH all output are forced HIGH.

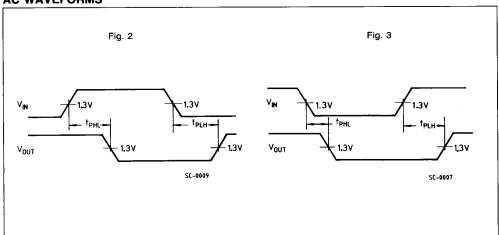
TRUTH TABLE

	INPUTS	3	OUPUTS					
Ē	A ₀	A ₁	Ō ₀	Ō ₁	Ō₂	Ō₃		
Н	×	Х	Н	Н	н	Н		
L	L	L	L	Н	Н	Н		
L	н	L	H	L	н	Н		
L	L	н	Н	Н	L	н		
L	н	н	Н	Н	Н	L		

H=HIGH Voltage Level


L = LOW Voltage Level

X = Don't Care


The enable can be used as the data input for a 4-output demultiplexer application.

Each half of the LS139 generates all four minterms of two variables. These four minterms are useful in some applications, replacing multiple gate functions as shown in Fig. 1, and thereby reducing the number of packages required in a logic network.

Fig. 1

AC WAVEFORMS

239

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Cumbal	Parameter Input HIGH Voltage		Limits			Test Conditions		
Symbol			Min.	Тур.	Max.		Units	
V _{IH}			2.0	2.0		Guaranteed i Voltage for a		
VIL	Input LOW Voltage	54			0.7	Guaranteed in	V	
		74			0.8	Voltage for al		
V_{CD}	Input Clamp Diode Vo	Itage		- 0.65	- 1.5	V _{CC} = MIN,I _{IN}	V	
V _{OH}	Output HIGH Voltage	54	2.5	3.4		$V_{CC} = MIN, I_{OH} = -400\mu A, V_{IN} = V_{IH}$ or		V
		74	2.7	3.4		V _{IL} per Truth		
V _{OL}	Output LOW Voltage	54,74		0.25	0.4	I _{OL} = 4.0mA	V _{CC} = MIN, V _{IN} = V _{IH} or	v
		74		0.35	0.5	I _{OL} = 8.0mA	V _{IL} per Truth Table	
l _{IH}	Input HIGH Current			1.0	20 0.1	V _{CC} = MAX, V V _{CC} = MAX, V	/ _{IN} = 2.7V	μA mA
I _{IL}	Input LOW Current				- 0.36	V _{CC} = MAX, V _{IN} = 0.4V		mA
los	Output Short Circuit Current (Note 2)		- 20		- 100	V _{CC} = MAX, V _{OUT} = 0V		mA
Icc	Power Supply Current			7.0	11	V _{CC} = MAX		mA

AC CHARACTERISTICS: TA = 25°C

Symbol	Parameter	Level of Delay		Limits			Ī
	raiametei	Level of Delay	Min.	Typ. Max.		Test Conditions	Units
t _{PLH} t _{PHL}	Propagation Delay, Address to Output	2 2		13 22	20 33		ns
t _{PLH} t _{PHL}	Propagation Delay, Enable to Output	3 3		18 25	29 38	V _{CC} = 5.0V C _L = 15pF	ns
t _{PLH} t _{PHL}	Propagation Delay, Enable to Output	2 2		16 21	24 32		ns

Notes:

- 1) Conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges.
- 2) Not more than one output should be shorted at a time.
- 3) Typical values are at $V_{CC} = 5.0V$, $T_A = 25$ °C