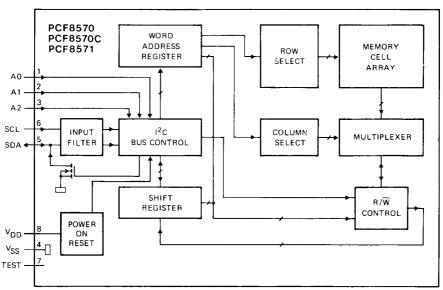
PCF8570/8570C/8571

GENERAL DESCRIPTION

The PCF8570, PCF8570C and PCF8571 are low-power static CMOS RAMs. The PCF8570 and PCF8570C are organized as 256 words by 8-bits and the PCF8571 is organized as 128 words by 8-bits. Addresses and data are transferred serially via a two-line bidirectional bus (i²C). The built-in word address register is incremented automatically after each written or read data byte. Three address pins A0, A1 and A2 are used for hardware address, allowing the use of up to eight devices connected to the bus without additional hardware. For system expansion over 8 devices the PCF8570/71 can be used in conjunction with the PCF8750C which has an alternative slave address for memory extension up to 16 devices.

Features

Operating supply voltage
Low data retention voltage
Low standby current
Power saving mode
2.5 V to 6 V min. 1.0 V max. 15 µA typ. 50 nA


- Serial input/output bus (1²C)
- Address by 3 hardware address pins
- Automatic word address incrementing
- 8-lead DIL package

Applications

 Telephony
RAM expansion for stored numbers in repertory dialling (e.g. PCD3343 applications)

Radio and television channel presets
Video cassette recorder channel presets

General purpose
RAM expansion for the microcontroller families MAB8400,
PCF84CXX and most other microcontrollers

PACKAGE OUTLINES

Fig.1 Block diagram.

7290775.3

PCF8570/PCF8570C/PCF8571/P: 8-lead DIL; plastic (SOT97). PCF8570/PCF8570C/PCF8571/T: 8-lead mini-pack (SO8L; SOT176C).

PCF8570/8570C/8571

PINNING

1 to 3	A0 to A2	address inputs
4	V_{SS}	negative supply
5	SDA	serial data line 12 C-bus serial clock line
6	SCL	
7	TEST	test input for test speed-up; must be connected to VSS when not in use
		(power saving mode, see Figs 12 and 13)
8	v_{DD}	positive supply

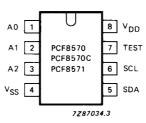


Fig.2 Pinning diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	min.	max.	unit
Supply voltage range	V_{DD}	-0.8	+ 8.0	V
Input voltage range	VI	-0.8	V _{DD} + 0.8	V
DC input current	± 1 ₁	_	10	mA
DC output current	± IO	_	10	mA
VDD or VSS current	± I _{DD} ; ± I _{SS}	-	50	mA
Total power dissipation	P _{tot}	_	300	mW
Power dissipation per output	PO	_	50	mW
Operating ambient temperature range	Tamb	-40	+ 85	oC
Storage temperature range	T _{stg}	-65	+ 150	oC

HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is good practice to take normal precautions appropriate to handling MOS devices (see 'Handling MOS Devices').

Purchase of Philips' 1²C components conveys a license under the Philips' 1²C patent to use the components in the 1²C-system provided the system conforms to the 1²C specifications defined by Philips.

PCF8570/8570C/8571

CHARACTERISTICS

 V_{DD} = 2.5 to 6 V; V_{SS} = 0 V; T_{amb} = -40 to +85 °C unless otherwise specified

parameter	conditions	symbol	min.	typ.	max,	unit
Supply						
Supply voltage		V_{DD}	2.5	-	6.0	V
Supply current operating	$V_I = V_{DD}$ or V_{SS} $f_{SCL} = 100 \text{ kHz}$	IDD	_	_	200	μΑ
standby	$f_{SCL} = 0 Hz$ $T_{amb} = -25 \text{ to } + 70 \circ \text{C}$	IDD0	_	 - -	15 5	μA μA
Power-on reset level	note 1	VPOR	1.5	1.9	2.3	٧
Inputs, input/output SDA						
Input voltage LOW	note 2	VIL	-0.8	_	0.3 V _{DD}	٧
Input voltage HIGH	note 2	V _{IH}	0.7 V _{DD}	_	V _{DD} +0.8	V
Output current LOW	V _{OL} = 0.4 V	IOL	3	_	_	mΑ
Leakage current	V _I = V _{DD} or V _{SS}	[<u> </u>	-	1	μΑ
Inputs A0 to A2; TEST				i		
Input leakage current	$V_I = V_{DD}$ or V_{SS}	± Լլլ	-	-	250	nΑ
Inputs SCL; SDA					-	
Input capacitance	V _I = V _{SS}	Cl	-	-	7	рF
LOW VDD data retention					 	
Supply voltage for data retention		V _{DDR}	1	_	6	v
Supply current	V _{DDR} = 1 V	IDDR	-	_	5	μΑ
Supply current	V _{DDR} = 1 V;					·
	$T_{amb} = -25 \text{ to } + 70 \text{ °C}$	IDDR	-	-	2	μΑ
Power saving mode	see Figs 12 and 13					
Supply current	TEST = V _{DD} ; T _{amb} = 25 °C		 			
PCF8570/PCF8570C PCF8571		I _{DDR} I _{DDR}	_	50 50	400 200	nA nA
Recovery time		tHD2	_	50	_	μs

Notes to the characteristics

- The power-on reset circuit resets the I²C-bus logic when V_{DD} < V_{POR}. The status of the device after a power-on reset condition can be tested by sending the slave address and testing the acknowledge bit.
- 2. If the input voltages are a diode voltage above or below the supply voltage V_{DD} or V_{SS} an input current will flow: this current must not exceed ± 0.5 mA.

PCF8570/8570C/8571

CHARACTERISTICS OF THE 12C-BUS

The I²C-bus is for 2-way, 2-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals.

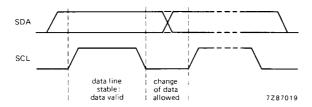


Fig.3 Bit transfer.

Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

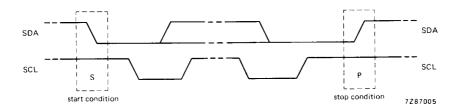


Fig.4 Definition of start and stop conditions.

PCF8570/8570C/8571

System configuration

A device generating a message is a "transmitter", a device receiving a message is the "receiver". The device that controls the message is the "master" and the devices which are controlled by the master are the "slaves".

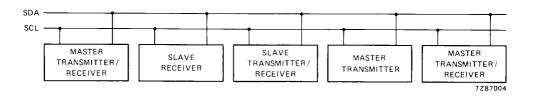


Fig.5 System configuration.

Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse, set-up and hold times must be taken into account. A master receiver must signal an end of data to the transmitter by *not* generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

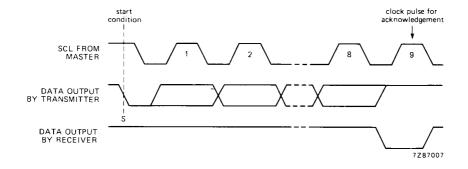


Fig.6 Acknowledgement on the I²C-bus.

Timing specifications

All the timing values are valid within the operating supply voltage and ambient temperature range and refer to V_{1L} and V_{1H} with an input voltage swing of V_{SS} to V_{DD} .

parameter	symbol	min.	typ.	max.	unit
SCL clock frequency	fSCL	_	_	100	kHz
Tolerable spike width on bus	†SW	_	_	100	ns
Bus free time	^t BUF	4.7	-	_	μs
Start condition set-up time	tSU; STA	4.7	-	-	μs
Start condition hold time	^t HD;STA	4.0	<u> </u>	-	μs
SCL LOW time	tLOW	4.7	-	_	μs
SCL HIGH time	tHIGH	4.0	_	_	μs
SCL and SDA rise time	t _r	_	_	1.0	μs
SCL and SDA fall time	tf	_	-	0.3	μs
Data set-up time	tSU; DAT	250	-	-	ns
Data hold time	tHD; DAT	0	-	_	ns
SCL LOW to data out valid	tVD; DAT	_	-	3.4	μs
Stop condition set-up time	tsu; sto	4.0	-	_	μs

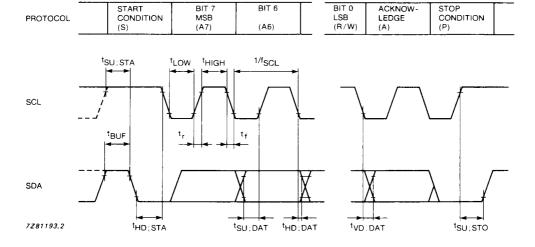


Fig. 7 12 C-bus timing diagram.

March 1989

PCF8570/8570C/8571

Bus protocol

Before any data is transmitted on the I²C-bus, the device which should respond is addressed first. The addressing is always done with the first byte transmitted after the start procedure. The I²C-bus configuration for different PCF8570/PCF8570C/PCF8571 READ and WRITE cycles is shown in Fig.8.

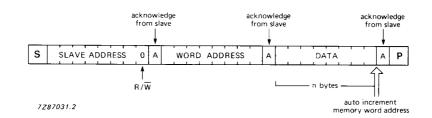


Fig.8(a) Master transmits to slave receiver (WRITE mode).

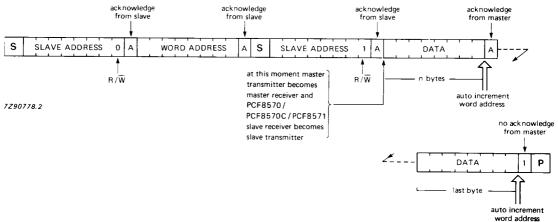


Fig.8(b) Master reads after setting word address (WRITE word address; READ data).

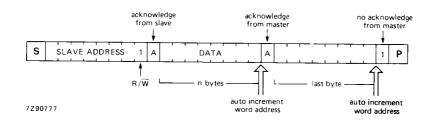


Fig.8(c) Master reads slave immediately after first byte (READ mode).

APPLICATION INFORMATION

The PCF8570/PCF8571 slave address has a fixed combination 1010 as group 1, while group 2 is fully programmable (see Fig.9). The PCF8570C has slave address 1011 as group 1, while group 2 is fully programmable (see Fig.10).

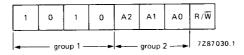


Fig.9 PCF8570 and PCF8571 address.

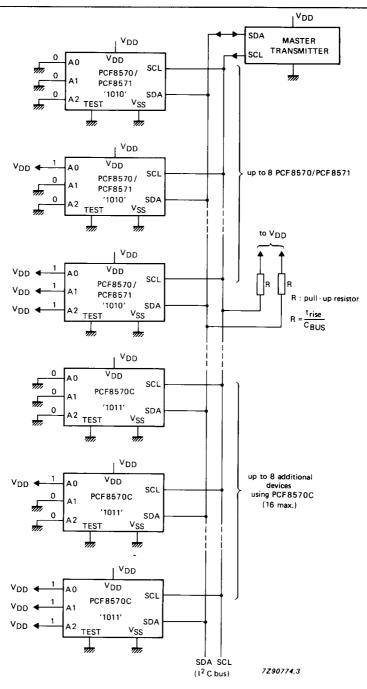


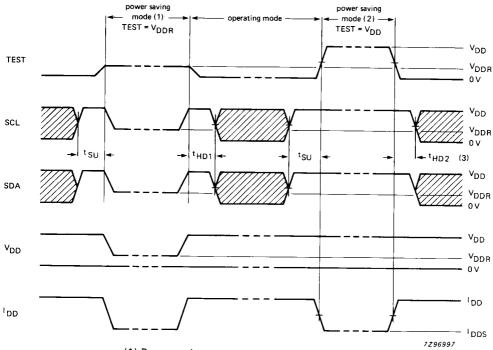
Fig.10 PCF8570C address.

Note

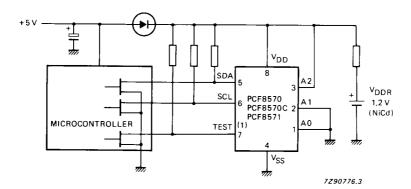
A0, A1, and A2 inputs must be connected to VDD or VSS but not left open-circuit.

PCF8570/8570C/8571

It is recommended that a 4.7 μ F/10 V solid aluminium capacitor (SAL) be connected between V_{DD} and V_{SS}.


Fig.11 Application diagram.

124


PCF8570/8570C/8571

POWER SAVING MODE

With the condition TEST = V_{DD} or V_{DDR} the PCF8570/PCF8570 goes into the power saving mode and I^2 C-bus logic is reset.

- (1) Power saving mode without 5 V supply voltage.
- (2) Power saving mode with 5 V supply voltage.
- (3) t_{SU} and $t_{HD1} \ge 4 \mu s$ and $t_{HD2} \ge 50 \mu s$. Fig.12 Timing for power saving mode.

(1) In the operating mode TEST = 0; In the power saving mode TEST = V_{DDR} .

It is recommended that a 4.7 μ F/10 V solid aluminium capacitor (SAL) be connected between V_{DD} and V_{SS}.

Fig.13 Application example for power saving mode.

March 1989