M74LS253P ## DUAL 4-LINE TO 1-LINE DATA SELECTOR/MULTIPLEXER WITH 3-STATE OUTPUT #### DESCRIPTION The M74LS253P is a semiconductor integrated circuit containing two 4-line to 1-line data selector/multiplexer circuits and 3-state outputs. #### **FEATURES** - Selection inputs common to both circuits - Output control inputs separate for each circuit - 3-state outputs - Wide operating temperature range (T_a=-20~+75°C) #### APPLICATION General purpose, for use in industrial and consumer equipment. #### **FUNCTIONAL DESCRIPTION** This IC has two data selector circuits which provide 1-line selection of 4 input signal using two multiplexer circuits which convert the 4-bit parallel data into serial data by time-sharing. When 4-line signals are applied to the data inputs D_0 , D_1 , \bar{D}_2 and D_3 , and 1 data is specifed from among the data input by selection inputs S_A and S_B , the input signal is output at Y. By applying 4-bit parallel data to data inputs D_0 , D_1 , D_2 and D_3 and by connecting the output of a synchronous divide-by-four counter to S_A and S_B , data D_0 , D_1 , D_2 and D_3 appear in the order of D_0 , D_1 , D_2 and D_3 , synchronized with the clock pulse. S_A and S_B are common to both circuits while output control inputs $1\overline{OC}$ and $2\overline{OC}$ are separate. When $1\overline{OC}$ and $2\overline{OC}$ are set high, 1Y and 2Y are put in the high-impedance state ("Z") irrespective of the status of the inputs. M74LS253P has the same functions and pin connections as M74LS153P but the latter is provided with active pull-up resistor outputs. #### FUNCTION TABLE (Note 1) | SB | SA | Do | D1 | D ₂ | D ₃ | <u>oc</u> | Υ | |----|----|----|----|----------------|----------------|-----------|---| | × | X | × | Х | X. | × | Н | Z | | ٦ | L | L | Х | × | × | L | L | | Г | L | н | × | × | × | ٦ | Н | | Γ | н | Х | L | × | × | L | L | | ٦ | н | × | н | × | × | L | н | | н | L | × | × | L | × | L | L | | Ŧ | L | X | Х | н | × | L | Н | | Н | н | Х | X | × | L | L | L | | н | Н | × | X | × | н | L | Н | Note 1 X : Irrelevant Z: High-impedance state # DUAL 4-LINE TO 1-LINE DATA SELECTOR/MULTIPLEXER WITH 3-STATE OUTPUT #### **ABSOLUTE MAXIMUM RATINGS** ($Ta = -20 \sim +75 \, ^{\circ}$), unless otherwise noted) | Symbol | Parameter | Conditions | Limits | Unit | |--------|--|------------|------------|------| | Vcc | Supply voltage | | -0.5-+7 | V | | Vı | Input voltage | | -0.5~+15 | V | | Vo | Output voltage | Off-state | -0.5~+5.5 | V | | Topr | Operating free-air ambient temperature range | | -20~+75 | σ | | Tstg | Storage temperature range | | 65 ~ + 150 | τ | #### **RECOMMENDED OPERATING CONDITIONS** ($Ta = -20 \sim +75 \, \text{°C}$, unless otherwise noted) | | | | Limits | | | | |--------|-----------------------------------|-------------------------|--------|-----|------|----| | Symbol | Parame | Min | Тур | Max | Unit | | | Vcc | Supply voltage | | 4.75 | 5 | 5.25 | ٧ | | юн | High-level output current | V _{OH} ≥ 2.4 V | 0 | | -2.6 | mA | | loL | | V _O ∟≦0.4V | 0 | | 4 | mA | | | Low-level output current VoL≤0.5V | | 0 | | 8 | mA | #### **ELECTRICAL CHARACTERISTICS** ($Ta = -20 \sim +75 \%$, unless otherwise noted) | | | Transmission | | Limits | | | | |------------------|--|--|--|--------|--------------|--------------|------| | Symbol Parameter | | Test conditions | | Min | Typ ≠ | Max | Unit | | Vih | High-level input voltage | | | 2 | | | V | | VIL | Low-level input voltage | | | | | 0.8 | ٧ | | VIC | Input clamp voltage | V _{CC} =4.75V, I _{IC} =-1 | V _{CC} =4.75V, I _{IC} =-18mA | | | - 1.5 | V | | Vон | - High-level output voltage | $V_{OC}=4.75V, V_{I}=0.8V$ $V_{I}=2V, I_{OH}=-2.6mA$ | | 2.4 | 3.1 | | ٧ | | VoL | Low-level output voltage | $V_{CC}=4.75V$
$V_{I}=0.8V, V_{I}=2V$ | 1 _{OL} = 4 mA
1 _{OL} = 8 mA | | 0.25 | 0.4 | V | | lozh | Off-state high-level output current | V _{CC} =5.25V, V _I = 2 V, V _O =2.7V | | | | 20 | μΑ | | lozL | Off-state low-level output current | V _{CC} =5.25V, V _I = 2 V, V _O =0.4V | | | | - 20 | μА | | | The state of s | V _{CC} =5.25V, V _I =2.7\ | , | | | 20 | μA | | ļш | High-level input current | V _{CC} =5.25V, V _I =10V | | | | 0,1 | mΑ | | I _{IL} | Low-level input current | V _{CC} =5.25V, V _I =0.4V | | | | -0.4 | mA | | los | Short-circuit output current (Note 2) | V _{CC} =5.25V, V _O = 0 V | | - 30 | | — 130 | mA | | ICCL | Supply current, all outputs low | V _{CC} =5.25V (Note 3) | | | 7 | 12 | mA | | Iccz | Supply current, all outputs off | V _{CC} =5.25V (Note 4) | | | 8.5 | 14 | mA | ^{* :} All typical values are at V_{CC} =5V, T_a =25°C. Note 2: All measurements should be done quickly and not more than one output should be shorted at a time. Note 3: I_{CCL} is measured with all inputs at 0V. Note 4: I_{CCZ} is measured with $1\overline{OC}$ and $2\overline{OC}$ at 4.5V and all other inputs at OV. #### SWITCHING CHARACTERISTICS ($V_{CC}=5$ V, Ta=25°C, unless otherwise noted) | | _ | T | Limits | | | | |------------------|--|--|--------|-----|-----|------| | Symbol | Parameter | Test conditions | Min | Тур | Max | Unit | | tpLH | Low-to-high-level, high-to-low-level output propagation | | | 8 | 25 | ns | | t _{PHL} | time, from inputs D ₀ ~D ₃ to output Y | C _L =15pF (Note 5) | | 12 | 20 | ns | | t _{PLH} | Low-to-high-level, high-to-low-level output propagation | | | 12 | 45 | ns | | t _{PHL} | time, from inputs SA, SB to output Y | | | 12 | 32 | ns | | t _{PZH} | Output enable time to high-level | R _L =2kΩ, C _L =15pF (Note 5) | | 11 | 28 | ns | | t _{PZL} | Output enable time to low-level | $R_L=2k\Omega$, $C_L=15pF$ (Note 5) | | 12 | 23 | ns | | t _{PHZ} | Output disable time from high-level | $R_L=2k\Omega$, $C_L=5pF$ (Note 5) | | 15 | 41 | ns | | t _{PLZ} | Output disable time from low-level | $R_L=2kQ$, $C_L=5pF$ (Note 5) | | 9 | 27 | ns | ### DUAL 4-LINE TO 1-LINE DATA SELECTOR/MULTIPLEXER WITH 3-STATE OUTPUT Note 5: Measurement circuit | Symbol | SW1 | SW2 | |--------|--------|--------| | tрzн | Open | Closed | | tpzL | Closed | Open | | tpLZ | Closed | Closed | | tphz | Closed | Closed | - The pulse generator (PG) has the following characteristics: PRR-1MHz, t_r =6ns, t_t =6ns, t_w =500ns, V_P = 3 $V_{P,P}$, Z_0 = 50 Ω . All diodes are switching diodes. ($t_{rf} \le 4$ ns) - (3) C_L includes probe and jig capacitance. #### TIMING DIAGRAM (Reference level = 1.3V) ## MITSUBISHI LSTTLs **PACKAGE OUTLINES** MITSUBISHI {DGTL LOGIC} D7E D 6249827 0013561 3