DUAL J-K POSITIVE EDGE-TRIGGERED FLIP FLOP WITH SET AND RESET

DESCRIPTION

The M74LS109AP is a semiconductor integrated circuit containing 2 J- \overline{K} positive edge-triggered flip-flop circuits with discrete terminals for clock input T, inputs J and \overline{K} , and direct set and reset inputs $\overline{S_D}$ and $\overline{R_D}$.

FEATURES

- Positive edge-triggering
- · Each flip-flop can be used independently
- Direct set and reset inputs
- J and K inputs
- Q and Q outputs
- Wide operating temperature range (T_a = −20~+75°C)

APPLICATION

General purpose, for use in industrial and consumer equipment.

FUNCTIONAL DESCRIPTION

When T changes from low to high, the J and \overline{K} signals immediately before the change emerge in outputs Q and \overline{Q} in accordance with the function table. By using $\overline{S_D}$ and $\overline{R_D}$, this IC can be made into a direct R-S flip-flop. When both $\overline{S_D}$ and $\overline{R_D}$ are low, Q = \overline{Q} = high. However, when both of them change to high at the same time, the status of Q and \overline{Q} cannot be anticipated. For use as a J-K flip-flop, $\overline{S_D}$ and $\overline{R_D}$ must be kept in high. By connecting J and \overline{K} , this IC can be used as a D-type flip-flop.

FUNCTION TABLE (Note 1)

SD	RD	Т	J	Ŕ	Q	Q	
L	Н	X	Х	×	н	L	
H	L	Х	X	×	L	н	
L	L	X	Х	×	н*	н*	
Н	н	L	×	Х	Q ⁰	Q ⁰	
Н	н	1	L	L	L	н	
Н	н	1	н	L	Toggle		
н	Н	1	L	н	Q°	Q ⁰	
Н	н	1	Н	н	Н	L	

- Note 1 ↑: Transition from low to high-level (positive edge trigger)
 - Q⁰: Level of Q before the indicated steady-state input conditions were established.
 - $\overline{Q^0}$: Level of \overline{Q} before the indicated steady-state input conditions were established. Toggle: complement of previous state with 1 transition of output
 - X : Irrelevant
 - *: $Q = \overline{Q} = \text{high when } \overline{S_D} = \overline{R_D} = \text{low and so when both } \overline{S_D} \text{ and } \overline{R_D} \text{ are set high, the status of } Q \text{ and } \overline{Q} \text{ cannot be anticipated.}$

ABSOLUTE MAXIMUM RATINGS (Ta = +20 ~ +75℃, unless otherwise noted)

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-0.5~+7	V
Vı	Input voltage		-0.5-+5.5	٧
Vo	Output voltage	High-level state	-0.5 ~ V _{CC}	٧
Topr	Operating free-air ambient temperature range		- 20 - + 75	Υ .
Tstg	Storage temperature range		-65~ + 150	r

DUAL J-K POSITIVE EDGE-TRIGGERED FLIP FLOP WITH SET AND RESET

RECOMMENDED OPERATING CONDITIONS ($T_a = -20 - +75 \, ^{\circ}\!\! \text{C}$, unless otherwise noted)

Symbol				Limits			
	Parameter			Тур	Max	Unit	
Vçc	Supply voltage		4.75	5	5.25	V	
Lon	High-level output current	V _{OH} ≥ 2.7V	0		-400	μΔ	
	Low-level output current	V _{OL} ≤0.4∨	0		4	mA	
LOF	V _{OL} ≤0.5V		0		8	mA	

ELECTRICAL CHARACTERISTICS (Ta = - 20~ + 75°C, unless otherwise noted)

Symbol	Parameter		Test conditions		Limits			
			rest condi	lest conditions		Тур ∗	Max	Unit
ViH	High-level input voltage							V
VIL	Low-level input voltage						0.8	V
VIC	Input clamp voltage	out clamp voltage $V_{CC} = 4.75V, I_{IC} = -18mA$				- 1.5	V	
V _{OH}	High-level output voltage		$V_{CC}=4.75V$, $V_{I}=0.8V$ $V_{I}=2V$, $I_{OH}=-400\mu A$		2.7	3.4		٧
14.	Low-level output voltage		V _{CC} =4.75V	I _{OL} = 4 mA		0.25	0.4	V
VOL)L Cow-level output vortage		$V_1 = 0.8 V, V_1 = 2 V$	I _{OL} 8 mA		0.35	0.5	V
	J, K , ⊤		Voc = 5.25V. VI = 2.7V			20		
	High-level input current	S _{D.} R _D	S _{D.} R _D			40	μA	
Чн	J, K, T	$V_{\rm CC} = 5.25 V$, $V_{\rm I} = 10 V$			0.1	0.1		
	SD, RD					0.2	mΑ	
		J, Ř, T					-0.4	
I _{IL}	Low-level input current	Sp. Rp	$V_{CC} = 5.25V, V_1 = 0.4V$				-0.8	mΑ
los	Short-circuit output current (No	te 2)	V _{CC} = 5.25V, V _O = 0 V		-20		- 100	mΑ
Tec	Supply current		V _{CC} = 5.25V, (Note 3)			4	8	mΑ

 $[\]bigstar$: All typical values are at $V_{CC} = 5 \ V_{\odot} \ Ta = 25 \ \! ^{\circ}\! C$

Combat	Parameter	Test conditions		Unit		
Symbol	rarameter	rest conditions	Min	Тур	Max	Unit
fmax	Maximum clock frequency		25	45		MHz
t PLH	Low-to-high-level, high-to-low-level output propagation	C _L = 15pF (Note 4)		10	25	ns
t PHL	time, from T to Q, Q			12	40	ns
t _{PLH}	Low-to-high-level, high-to-low-level output propagation			11	25	ns
t PHL	time, from S _D , R _D to Q, Q			10	40	ns

Note 3: Measurement circuit

(1) The pulse generator (PG) has the following characteristics: PRR = 1MHz, t_r = 6ns, t_f = 6ns, t_w = 500ns, V_P = 3 $V_{P,P}$, Z_O = 50 Ω .

(2) C_L includes probe and jig capacitance.

Note 2: All measurements should be done quickly and not more than one output should be shorted at a time.

Note 3: The supply current should be measured with Q and \overline{Q} alternately set high and with T set low during actual measurement.

DUAL J-K POSITIVE EDGE-TRIGGERED FLIP FLOP WITH SET AND RESET

TIMING REQUIREMENTS ($V_{CC} = 5 \text{ V}$, $T_a = 25 \, ^{\circ}\!\! \text{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Тур	Max	Oliit
tw(TH)	Clock input T high pulse width		25	11		ns
tw(sp.Rb)	Direct set, reset pulse width		25	4		ns
t _{su(H)}	Setup time high to T		20	19		ns
t _{su(L)}	Setup time low to T		20	7		ns
th(H)	Hold time high to T		5	- 2		ns
th(L)	Hold time low to T		5	-16		ns

TIMING DIAGRAM (Reference level = 1.3V)

Note 4: The shaded areas indicate when the input is permitted to change for predictable output performance.

APPLICATION EXAMPLE

Typical circuit for converting asynchronous signal into synchronous signal and rise/fall differential circuit

Note 5: The waveforms indicated by the dotted lines apply when reading with the next clock without observing the set-up time to T.

MITSUBISHI LSTTLs **PACKAGE OUTLINES**

MITSUBISHI {DGTL LOGIC} D7E D 6249827 0013561 3

