

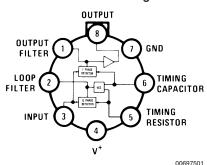
LM567/LM567C Tone Decoder

General Description

The LM567 and LM567C are general purpose tone decoders designed to provide a saturated transistor switch to ground when an input signal is present within the passband. The circuit consists of an I and Q detector driven by a voltage controlled oscillator which determines the center frequency of the decoder. External components are used to independently set center frequency, bandwidth and output delay.

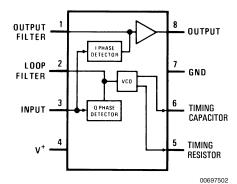
Features

- 20 to 1 frequency range with an external resistor
- Logic compatible output with 100 mA current sinking capability
- Bandwidth adjustable from 0 to 14%


- High rejection of out of band signals and noise
- Immunity to false signals
- Highly stable center frequency
- Center frequency adjustable from 0.01 Hz to 500 kHz

Applications

- Touch tone decoding
- Precision oscillator
- Frequency monitoring and control
- Wide band FSK demodulation
- Ultrasonic controls
- Carrier current remote controls
- Communications paging decoders


Connection Diagrams

Metal Can Package

Top View Order Number LM567H or LM567CH See NS Package Number H08C

Dual-In-Line and Small Outline Packages

Top View
Order Number LM567CM
See NS Package Number M08A
Order Number LM567CN
See NS Package Number N08E

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage Pin 9V Power Dissipation (Note 2) 1100 mW V_8 15V V_3 -10V V_3 $V_4 + 0.5V$ Storage Temperature Range -65°C to $+150^{\circ}\text{C}$

Operating Temperature Range

LM567H -55° C to $+125^{\circ}$ C LM567CH, LM567CM, LM567CN 0° C to $+70^{\circ}$ C

Soldering Information

Dual-In-Line Package

Soldering (10 sec.) 260°C

Small Outline Package

Vapor Phase (60 sec.) 215°C Infrared (15 sec.) 220°C

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

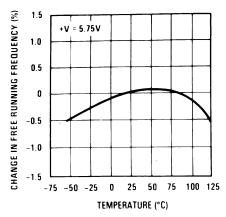
Electrical Characteristics

AC Test Circuit, $T_A = 25^{\circ}C$, $V^+ = 5V$

Devemateva	Conditions	LM567			LM567C/LM567CM			
Parameters		Min	Тур	Max	Min	Тур	Max	Units
Power Supply Voltage Range		4.75	5.0	9.0	4.75	5.0	9.0	V
Power Supply Current Quiescent	R _L = 20k		6	8		7	10	mA
Power Supply Current Activated	R _L = 20k		11	13		12	15	mA
Input Resistance		18	20		15	20		kΩ
Smallest Detectable Input Voltage	$I_L = 100 \text{ mA}, f_i = f_o$		20	25		20	25	mVrms
Largest No Output Input Voltage	$I_{\rm C} = 100 \text{ mA}, f_{\rm i} = f_{\rm o}$	10	15		10	15		mVrms
Largest Simultaneous Outband Signal to Inband Signal Ratio			6			6		dB
Minimum Input Signal to Wideband Noise Ratio	B _n = 140 kHz		-6			-6		dB
Largest Detection Bandwidth		12	14	16	10	14	18	% of f _o
Largest Detection Bandwidth Skew			1	2		2	3	% of f _o
Largest Detection Bandwidth Variation with Temperature			±0.1			±0.1		%/°C
Largest Detection Bandwidth Variation with Supply Voltage	4.75-6.75V		±1	±2		±1	±5	%V
Highest Center Frequency		100	500		100	500		kHz
Center Frequency Stability (4.75–5.75V)	$0 < T_A < 70$ -55 < $T_A < +125$		35 ± 60 35 ± 140			35 ± 60 35 ± 140		ppm/°C ppm/°C
Center Frequency Shift with Supply	4.75V-6.75V		0.5	1.0		0.4	2.0	%/V
Voltage	4.75V-9V			2.0			2.0	%/V
Fastest ON-OFF Cycling Rate			f _o /20			f _o /20		
Output Leakage Current	V ₈ = 15V		0.01	25		0.01	25	μA
Output Saturation Voltage	$e_i = 25 \text{ mV}, I_8 = 30 \text{ mA}$		0.2	0.4		0.2	0.4	V
	$e_i = 25 \text{ mV}, I_8 = 100 \text{ mA}$		0.6	1.0		0.6	1.0	V
Output Fall Time			30			30		ns
Output Rise Time			150			150		ns

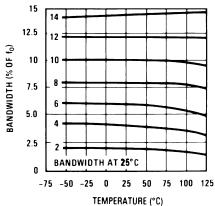
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

Note 2: The maximum junction temperature of the LM567 and LM567C is 150°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient or 45°C/W, junction to case. For the DIP the device must be derated based on a thermal resistance of 110°C/W, junction to ambient. For the Small Outline package, the device must be derated based on a thermal resistance of 160°C/W, junction to ambient

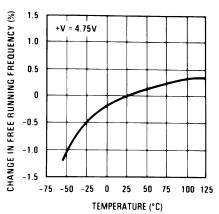

Note 3: Refer to RETS567X drawing for specifications of military LM567H version.

www.national.com 2

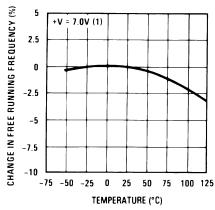
Schematic Diagram R10 ₹ R11 ₹ ₹ R3 4.7K Q53 Q59 R20 **₹ ≹** R22 ₹R31 **₹** R45 023 -**VV** R30 R29 ₹R32 048 032 Q6 043 **₹**R23 R26 **≷** 040 **≸**R34 Q5 031 R24 ≸ R28 ≸


Typical Performance Characteristics

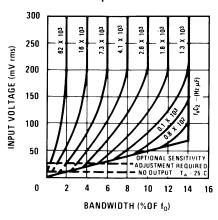
Typical Frequency Drift


00697510

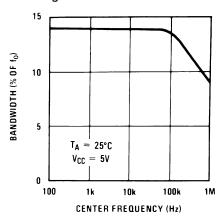
Typical Bandwidth Variation


00697511

Typical Frequency Drift

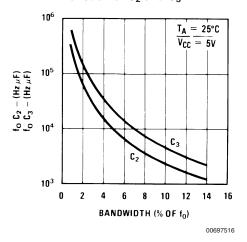

00697512

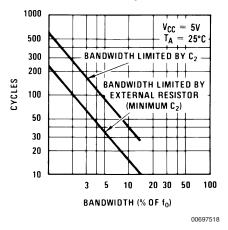
Typical Frequency Drift


00697513

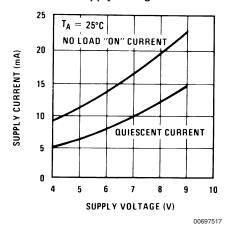
Bandwidth vs Input Signal Amplitude

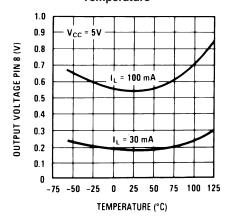
00697514


Largest Detection Bandwidth

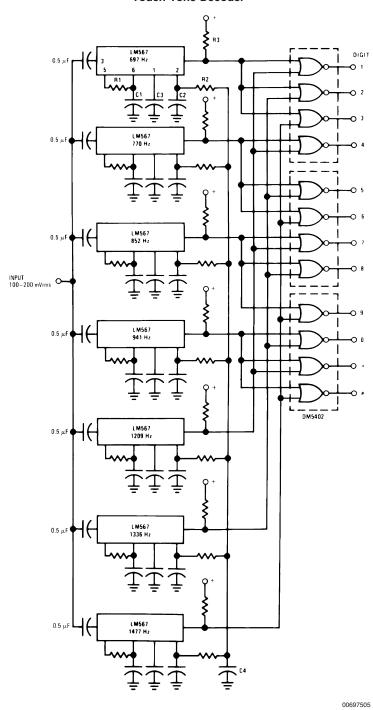

00697515

Typical Performance Characteristics (Continued)


Detection Bandwidth as a Function of C₂ and C₃


Greatest Number of Cycles Before Output

Typical Supply Current vs Supply Voltage


Typical Output Voltage vs Temperature

00697519

Typical Applications

Touch-Tone Decoder

Component values (typ)

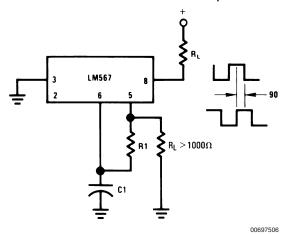
R1 6.8 to 15k

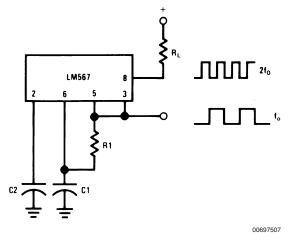
R2 4.7k

R3 20k

C1 0.10 mfd

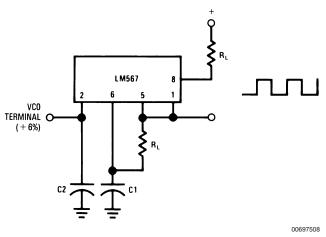
C2 1.0 mfd 6V

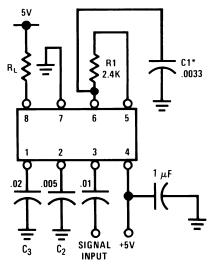

C3 2.2 mfd 6V


C4 250 mfd 6V

Typical Applications (Continued)

Oscillator with Double Frequency Output


Oscillator with Quadrature Output


Connect Pin 3 to 2.8V to Invert Output

Precision Oscillator Drive 100 mA Loads

7

AC Test Circuit

00697509

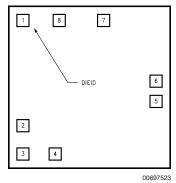
 $f_i = 100 \text{ kHz} + 5 \text{V}$

*Note: Adjust for f₀ = 100 kHz.

Applications Information

The center frequency of the tone decoder is equal to the free running frequency of the VCO. This is given by

$$f_o \cong \frac{1}{1.1 R_1 C_1}$$


The bandwidth of the filter may be found from the approximation

BW = 1070
$$\sqrt{\frac{V_i}{f_o C_2}}$$
 in % of f_o

Where:

 $\begin{aligned} V_i &= \text{Input voltage (volts rms)}, \ V_i \leq 200 \text{mV} \\ C_2 &= \text{Capacitance at Pin 2(}\mu\text{F)} \end{aligned}$

LM567C MDC MWC TONE DECODER

Die Layout (C - Step)

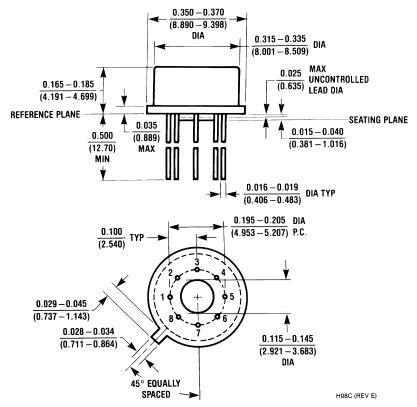
DIE/WAFER CHARACTERISTICS

Fabrication Attributes		General Die Information			
Physical Die Identification	LM567C	Bond Pad Opening Size (min)	91µm x 91µm		
Die Step	С	Bond Pad Metalization	0.5% COPPER_BAL. ALUMINUM		
Physical Attributes		Passivation	VOM NITRIDE		
Wafer Diameter	150mm	Back Side Metal	BARE BACK		
Dise Size (Drawn)	1600µm x 1626µm 63.0mils x 64.0mils	Back Side Connection	Floating		
Thickness	406µm Nominal				
Min Pitch	198µm Nominal				

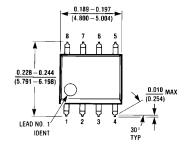
Special Assembly Requirements:

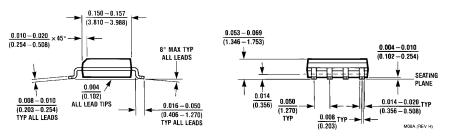
Note: Actual die size is rounded to the nearest micron.

Die Bond Pad Coordinate Locations (C - Step)							
(Referenced to die center, coordinates in μm) NC = No Connection, N.U. = Not Used							
SIGNAL NAME	PAD# NUMBER	X/Y COORDINATES		PAD SIZE			
		Х	Υ	Х		Υ	
OUTPUT	1	-673	686	91	х	91	
FILTER							
LOOP FILTER	2	-673	-419	91	x	91	
INPUT	3	-673	-686	91	х	91	
V+	4	-356	-686	91	х	91	
TIMING RES	5	673	-122	91	х	91	
TIMING CAP	6	673	76	91	х	91	
GND	7	178	686	117	Х	91	
OUTPUT	8	-318	679	117	Х	104	

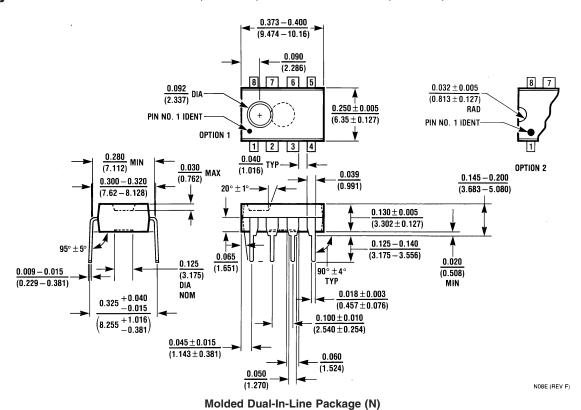

www.national.com

LM567C MDC MWC TONE DECODER (Continued)


IN U.S.A	
Tel #:	1 877 Dial Die 1 877 342 5343
Fax:	1 207 541 6140
IN EUROPE	
Tel:	49 (0) 8141 351492 / 1495
Fax:	49 (0) 8141 351470
IN ASIA PACIFIC	
Tel:	(852) 27371701
IN JAPAN	
Tel:	81 043 299 2308


www.national.com 10

Physical Dimensions inches (millimeters) unless otherwise noted


Metal Can Package (H) Order Number LM567H or LM567CH **NS Package Number H08C**

Small Outline Package (M) Order Number LM567CM **NS Package Number M08A**

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Order Number LM567CN NS Package Number N08E

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com

Tel: 1-800-272-9959

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171

National Semiconductor

Français Tel: +33 (0) 1 41 91 8790

Europe Customer Support Center

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com **National Semiconductor** Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560