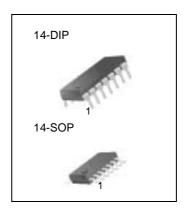
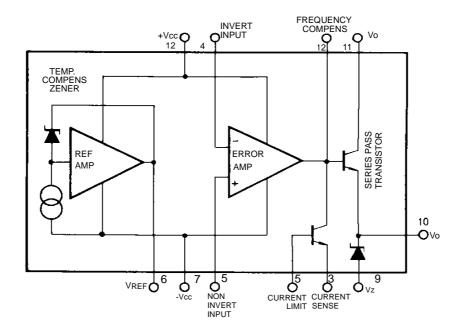


KA723


Precision Voltage Regulator

Features


- Positive or Negative Supply Operation
- 0.01% line and load regulation
- Output voltage adjustable from 2V to 37 V
- Output current to 150mA without external pass transistor

Description

The KA723 are monolithic integrated Circuit voltage regulators featuring high ripple rejection, excellent output and load regulation, excellent temperature stability, and low standby current. The KA723 are also useful in a wide range of other applications such as a shunt regulator, a current regulator or a temperature controller.

Internal Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Pulse Voltage from V+ to V- (50ms)	V _I (P)	50	VPEAK
Continuous Voltage from V+ to V-	VI	40	V
Input-Output Voltage Differential	VI - VO	40	V
Maximum Output Current	lo	150	mA
Differential Input Voltage	VID	±5	V
Voltage Between Non-Inverting Input and V-	VIE	8	V
Current from VZ	Iz	25	mA
Current from VREF	IREF	15	mA
Power Dissipation	PD	1000	mV
Operating Temperature Range	Topr	0 ~ +70	°C
Storage Temperature Range	TSTG	-65 ~ + 150	°C

Electrical Characteristics

(Unless otherwise specified, $T_A = 25^{\circ}C$, $V_{IN} = V^+ = V_C = 12V$, $V^- = 0$, $V_{OUT} = 5V$, $I_L = 1 \text{mA}$, $R_{SC} = 0$, $C_I = 100 \text{pF}$, $C_{REF} = 0$ and divider impedance as seen by error amplifier $\leq 10 \text{K}\Omega$ connected as shown in figure 1)

Parameter	Symbol	Conditions	Min	Тур.	Max.	Unit	
Line Regulation	ΔVο	V _I = 12V to 15V V _I = 12V to 40V	-	0.01 0.1	0.1 0.5	- %	
		$T_{MIN} \le T_A \le T_{MAX}$ V _I = 12V to 15V			70		
		IO = 1mA to 50mA	-	0.03	0.2		
Load Regulation	ΔVο	$T_{MIN} \le T \le T_{MAX}$ IO = 1 to 50mA	-	-	0.6	%	
Ripple Rejection	dB	f = 100Hz to 10KHz,CREF =0	-	74	-	dB	
		$f = 100$ Hz to 10 KHz, $C_{REF} = 5\mu F$	-	86	-		
Average Temperature Coefficient of Output Voltage	ΔV0/ΔΤ	TMIN ≤T≤TMAX	-	0.003	0.015	%/°C	
Short Circuit Current Limit	Isc	$RSC = 10\Omega$, $VO = 0$	-	65	-	mA	
Reference Voltage	VREF	-	6.80	7.15	7.50	V	
Output Noise Voltage	VN	f = 100Hz to 10KHz, CREF = 0	-	20	-	μVms	
		$f = 100$ Hz to 10 KHz, $C_{REF} = 5\mu F$	-	2.5	-		
Long-term Stability	ST	-	-	0.1	-	%/ 1000HR	
Standby Current Drain	ID	IL = 0, VI = 30V	-	2.0	4.0	mA	
Input Voltage Range	VI	-	9.5	-	40	V	
Output Voltage Range	Vo	-	2.0	-	37	V	
Input-Output Voltage Differential	VD	-	3.0	-	38	V	

Notes:

^{1.}Line and load regulation specifications are given for the condition of constant chip temperature.

^{2.}Temperature drifts must be taken into account separately for hith dissipation conditions.

Typical Application

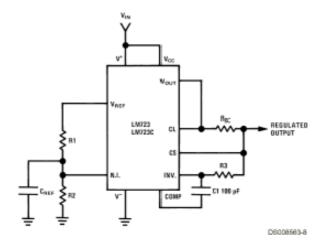


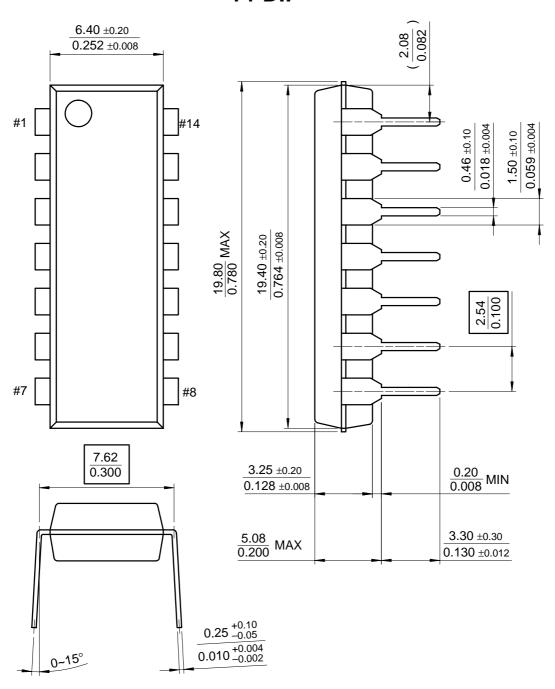
Figure 1. Basic Low Voltage Regulator (Vout = 2 to 7Volts)

Note: R3 = $\frac{R1R2}{R1 + R2}$ for minimum temperature drift

Typical Performance

Regulated Output Voltage 5V

Line regulation ($\Delta V_{IN} = 3V$) 0.5mV

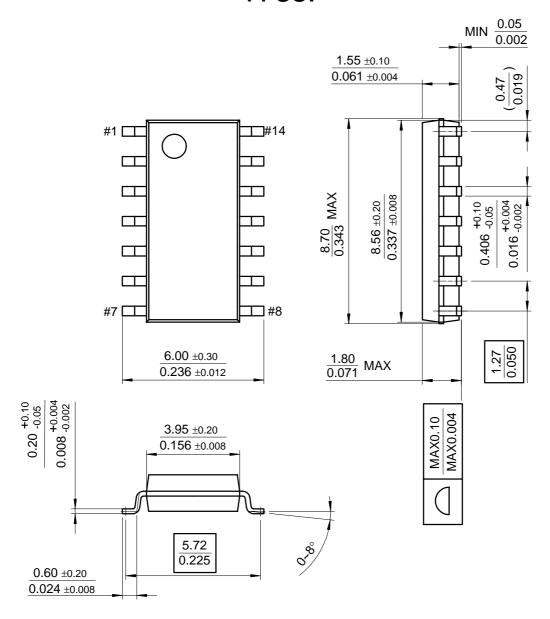

Load Regulation ($\Delta V_L = 50V$) 1.5mV

Mechanical Dimensions

Package

Dimensions in millimeters

14-DIP



Mechanical Dimensions (Continued)

Package

Dimensions in millimeters

14-SOP

Ordering Information

Product Number	Package	Operating Temperature	
KA723	14-DIP	0 ~ +70°C	
KA723D	14-SOP	0~+100	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.