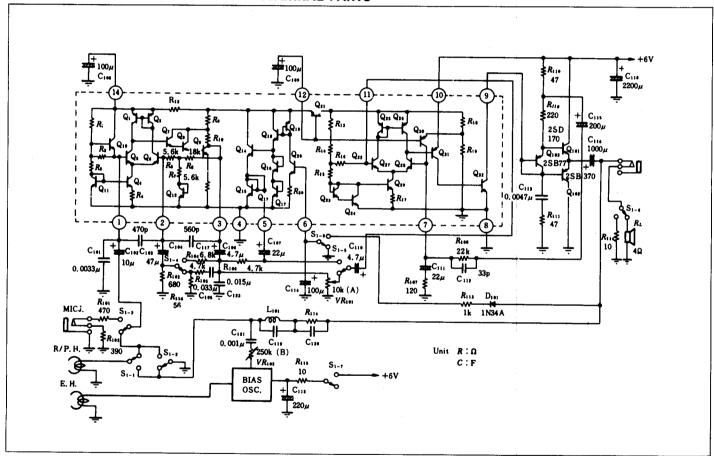

HA1319


AUDIO AMPLIFIER FOR TEPE RECORDER

FEATURES

- No transformer required thanks to complementary output circuit
- Excellent equalizer characteristics
- Low-distortion recording even if volumeless because of AGC circuit wide dynamic range.
- Wide supply voltage range, $V_{CC} \ge 4V$.

■ CIRCUIT SCHEMATIC AND TYPICAL EXTERNAL PARTS

■ ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

ltem	Symbol	Rating	Unit	
Supply Voltage	V _{cc}	12		
Power Dissipation	Pr	400	mW	
9-pin Current	l ₉	30	mA	
Operating Temperature	T _{op} ,	-10 to +70	°C	
Storage Temperature	Tstg	-55 to +125	°C	

^{*1,} is the current to flow into 9-pin

ELECTRICAL CHARACTERISTICS $(V_{cc}=6V, R_L=4\Omega, f=1kHz, Ta=25^{\circ}C)$ with output transistors

ltem		Symbol	Test Condition	min	typ	max	Unit
Quiescent Current		lo		10	15	20	mA
Output Power		Po max	T.H.D=10% (play)	0.8	1.0	_	W
Voltage Gain		Gv	(play)	_	85	_	dB
Total Harmonic Distortion		T.H.D	P _{out} = 100mW (play)	_	0.5	1.8	%
Output Noise Voltage)	V _n	R _g =0 (play)	_	17	30	m۷
Input Resistance	Preamp	Rin	(play)	10	20	_	kΩ
	Drive Amp			10	35	-	kΩ
AGC Ratio		RATIO AGC	V _{in} = -70dBm → -30dBm		30		dB
AGC Total Harmonic Distortion		T.H.D AGC	V _{in} = - 30dBm (rec)	_	1		%
Min Operating Voltage		V _{cc} min	(play)	4	_	_	٧

Operating Considerations

Regarding the selection of exte

(8) C₁₀₉

	V _{cc} min		(play)	4			V
ternal	parts, refer	to all of the	following comments:				
(1) C ₁₀₁	:	Capacitor for use as a	compe	nsator f	or high-f	frequency
			characteristics during playl	back.			
			Use C_{101} suitable for the	character	istic of a	head.	
(2) C ₁₀₂	:	Capacitor to prevent being	ng affect	ted by w	vaves of	radio and
			television broadcasts.				
			Determine C ₁₀₃ experime				
			by pattern of the printed of				
(3		:	Capcacitors for use as pre			•	
	C ₁₂₃		tions. C ₁₁₇ functions to el		ngn-rrequ	iency noi	se.
14		_	Use C ₁₁₇ in 500 to 1000pl				
(4		•	These are used as playback The time constant is 125	-		/s speed:	however
	R ₁₀₅ ,		they must be modified a t				
	R ₁₁₆		required frequency charac	-			
			at f = 1kHz with the stand			gain is ab	out toub
(5	i) R ₁₀₃ ,	:	Resistors used to determin			r voltage (gain while
,,	R ₁₀₄	•	recording. G _V is approxim			_	
	**104					R_1	
			If the voltage gain is rei	nded too	high, t	_	
			activity will be a narrowed	design G	$_{ m V}$ for 20	dB.	
(6	i) R ₁₀₆	:	Resistor used to divide th	e AGC v	oltage. W	/hile reco	rding, the
			preamplifier output of p	in 3 is	added t	o the dri	ver stage,
			being divided into R ₁₀₆	and out	put impe	dance of	the AGC
			circuit.				
(7		:	C ₁₁₄ , D ₁₀₁ , and R ₁₁₃ are	re used a	s control	signal re	ctifiers of
	D ₁₀₁ ,		the AGC circuit.	_			
	R ₁₁₃		Use a germanium diode in		the AGO	` will no	nt operate
			If C ₁₁₄ is rendered too immediately after a radica				
			Conversely, on redering				
			does not occur, and the A				
			Use a 100µF capacitor.		- /	· - •	

At tape stoppage, short C_{1 14} to discharge electricity.

R_{1 1 3} is a damping resistor. Use a resistor over $1k\Omega$.

Power ripple filter.

This is related to the rise time at power switch ON.

Use a $100\sim200\mu\text{F}$ capacitor.

(9) R_{107} , R_{108} Negative feedback resistor to determine voltage gain of the

driver r + output stage.

G_V is approximately determined as follows:

$$\frac{R_{108}}{R_{107}} = \left(\frac{22k\Omega}{120\Omega} = 183 \rightarrow 45dB\right)$$

(10) C_{112} , C_{113} , : R_{111}

The function of C_{112} and C_{113} are to prevent oscillation

of the driver + output stage. Use a 30 to 60pF capacitor in C_{112} .

(11) C₁₁₅ :

Bootstrap Capacitor

Use a capacitor over 100μ F.

(12) R_{109} , R_{110} :

Resistors to determine the driving current of the output stage.

Determine them as follows:

$$\frac{V_{CC}}{2(R_{109} + R_{110})} = 10 \text{ to } 15\text{mA}$$

Since R_{109} is arranged in parallel with the load resistance for AC, its value must be more than 10 times the load resistance.

(13) Q_{101} , Q_{102} :

Use germanium power transistors in these. If use silicon power

transistors are used, output power will be lowered.

At V_{CC} = 6V it decreases about 30%.

(14) Q₁₀₃ :

Employed to let an idling current flow to the power

transistors.

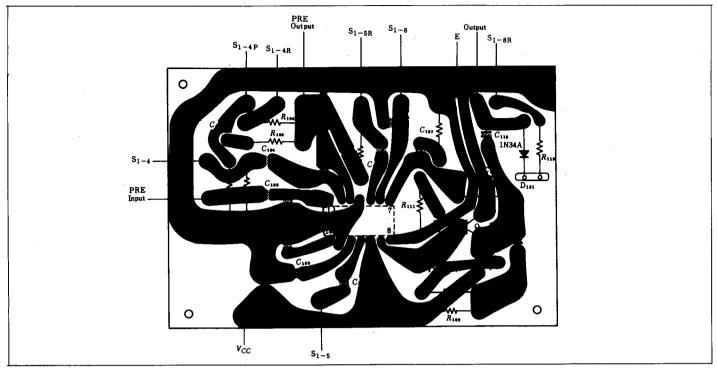
When the power transistors are germanium, $Q_{1\,0\,3}$ must be a germanium transistor or varistor. $Q_{10\,1}$ to $Q_{10\,3}$ should be

mounted on the same heat sink.

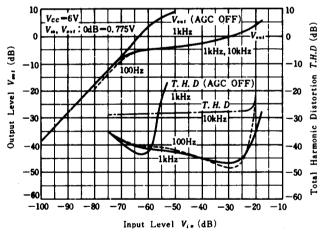
(15) R₁₁₄, C₁₂₀

These function as equalizers of the recording head. Choose

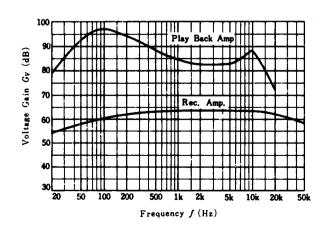
that which is suitable to the recording head characteristic.

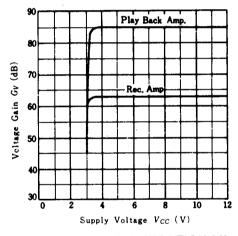

(16) L₁₀₁, C₁₁₉

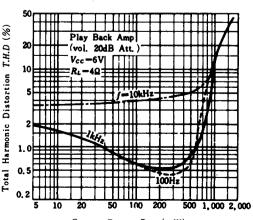
These are bias trap coils.


The resonant frequency must equal the bias oscillation

frequency.


■ PRINTED CIRCUIT BOARD (Bottom View)


OUTPUT LEVEL AND TOTAL HARMONIC DISTORTION VS. INPUT LEVEL


FREQUENCY CHARACTERISTICS OF PLAYBACK AMP. AND RECORDING AMP.

VOLTAGE GAIN VS. SUPPLY VOLTAGE

TOTAL HARMONIC DISTORTION VS. OUTPUT POWER (PLAYBACK AMP.)

Output Power Pows (mW)

HITACHI 127