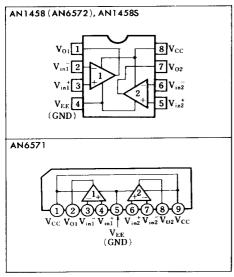
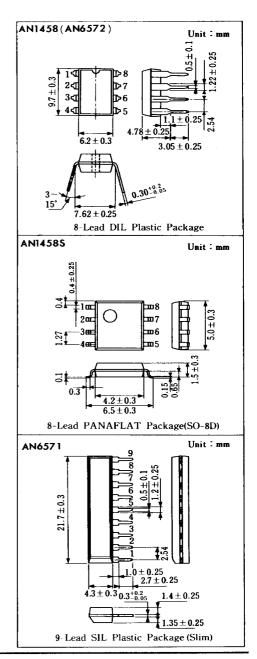
AN1458 (AN6572),AN1458S, AN6571

Dual Operational Amplifiers


■ Outline


The AN1458(AN6572), the AN1458S, and the AN6571 are dual operational amplifiers with phase compensation circuits builtin and also an output short-circuit protection built-in, so that they are highly stable and can be used widely in various electronic circuits.

■ Features

- · Built-in phase compensation circuit
- Wide range of common-mode input voltage, no latch-up
- Built-in short-circuit protection
- ◆ Low input offset voltage : V_{I(offset)} = 0.5mV typ.
- Low input offset current : I10=10nA typ.

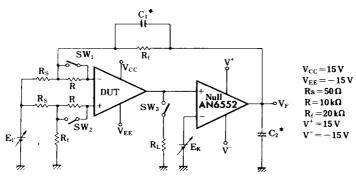
■ Block Diagrams

Pin

<AN1458 (AN6572), AN1458S>

<AN6571>

	-					
Pin No.	Pin Name	Pin No.	Pin Name			
1	Ch. 1 Output	1	Vcc			
2	Ch. 1 Invert Input	2	Ch. 1 Output			
3	Ch. 1 Non Invert Input	3	Ch. 1 Invert Input			
4	V _{EE} (GND)	4	Ch. 1 Non Invert Input			
5	Ch. 2 Non Invert Input	5	V _{EE} (GND)			
6	Ch. 2 Invert Input	6	Ch. 2 Non Invert Input			
7	Ch. 2 Output	7	Ch. 2 Invert Input			
	Vcc	8	Ch. 2 Output			
		9	Vcc			

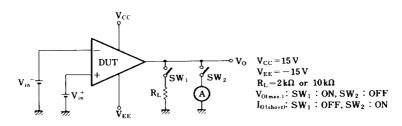

■ Absolute Maximum Ratings (Ta=25°C)

	Item .	Symbol	Rating	Unit	
	Supply Voltage	V_{cc}	±18	V	
Voltage	Differential Input Voltage	V_{ID}	±30	V	
	Common-Mode Input Voltage	V _{ICM}	±15	V	
D Diiti	AN1458 (AN6572), AN6571	D	500	mW	
Power Dissipation	AN1458S	P_{D}	360		
Operating Ambie	nt Temperature	$T_{\sf opr}$	$-20 \sim +75$	°C	
C+ T	AN1458 (AN6572), AN6571	т	$-55 \sim +150$	°C	
Storage Temperature	AN1458S	$\mathrm{T_{stg}}$	$-55 \sim +125$		

■ Electrical Characteristics $(V_{cc} = 15V, V_{EE} = -15V, Ta = 25\%)$

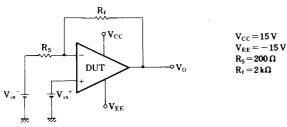
Item	Symbol	Test Circuit	Condition	min.	typ.	max.	Unit
Input Offset Voltage	V _{I(offset)}	1	$R_S \leq 10 k\Omega$		0.5	4	mV
Input Offset Current	I _{IO}	1			10	100	nA
Input Bias Current	IBias	1			50	250	nA
Voltage Gain	Gν	1	$R_L \ge 2k\Omega$, $V_o = \pm 10V$	86	106		dB
M. C. C. L. W. Iv.	V _{O(max.)}	2	$R_L \ge 10 k\Omega$	±12	±14		V
Maximum Output Voltage		2	R _L ≥2kΩ	±10	±13		V
Common-Mode Input Voltage Width	V _{CM}	3		±12	±13		V
Common-Mode Rejection Ratio	CMR	1	Rs≦10kΩ	70	90		dB
Supply Voltage Rejection Ratio	SVR	1	$R_S \leq 2k\Omega$		3	150	$\mu V/V$
Supply Current	I_{cc}	4	$R_L = \infty$			5.6	mA
Power Consumption	Pc	4	$R_L = \infty$			170	mW
Output Short-Circuit Current	I _{O(short)}	2			±20		mA
Slew Rate	SR	5			0.7		V/µs

Test Circuit 1 ($V_{I(offset)}$, I_{10} , I_{Bias} , G_V , CMR, SVR)

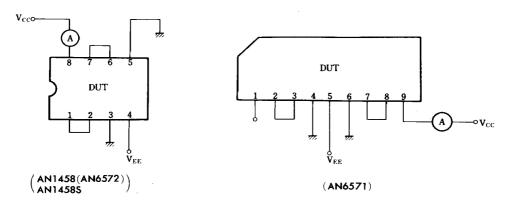


* C1 and C2 are capacitors for the prevention of oscillation.

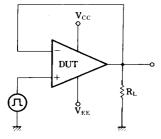
Item	Measurement Conditions				
Input Offset Voltage	V_{F1} is measured with the SW ₁ , SW ₂ and SW ₃ set to OFF and $E_c = E_K = OV$. Can be given by $V_{\text{Hoffset}} = \frac{V_{\text{F1}}}{400}(V)$				
Input Offset Current	V_{F2} is measured with the SW ₁ and SW ₂ set to ON, the SW ₃ set to OFF and $E_c = E_x = OV$. Can be given by $I_{10} = \frac{\mid V_{F2} - V_{F1} \mid}{4 \times 10^6} (A)$				
Input Bias Current	$\begin{array}{c} V_{F3} \text{ is measured with the SW_3 set to OFF, $E_c = E_K = OV$, the SW_1 set to ON and the SW_2 set to OFF.} \\ V_{F4} \text{ is measured with the SW_1 and SW_2 reversed.} \end{array} \\ \begin{array}{c} Can \text{ be given by. } I_{Blas} = \frac{\mid V_{F3} - V_{F4} \mid}{8 \times 10^6} (A) \end{array}$				
Voltage Gain	$ \begin{array}{c} V_{F5} \text{ is measured with the } SW_1\text{'} SW_2 \text{ and } SW_3 \text{ set to ON, } E_C = OV \text{ and } E_K = 10V. \ V_{F5} \text{ is measured with } \\ E_K = -10V. \ \text{Can be given by } G_V = 20 log \left(\frac{8000}{\mid V_{F5} - V_{F} \mid_5} \mid \right) \end{array} $				
Common-Mode Rejection Ratio	V_{F6} is measured with both the SW ₁ and SW ₂ set to ON, the SW ₃ set to OFF, $E_R = OV$ and $E_C = 5V$. V_{F6} is measured with $E_C = -5V$. Can be given by $CMR = 20log\left(\frac{4000}{\mid V_{F6} - V_{F6} \mid e \mid}\right)$				
Supply Voltage Rejection Ratio I	V_{F7} is measured with both the SW_1 and SW_2 set to ON, the SW_3 set to OFF, $E_K = E_C = OV$ and $V_{CC} = 10V$. Can be given by $SVR(+) = \frac{\mid V_{F7} - V_{F2} \mid}{2 \times 10^3}$				
Supply Voltage Rejection Ratio II V_{F8} is measured with both the SW_1 and SW_2 set to ON, the SW_3 set to OFF, $E_R = E_C = OV$ are $10V$. Can be given by $SVR(-) = \frac{\mid V_{F8} - V_{F2} \mid}{2 \times 10^3}$					

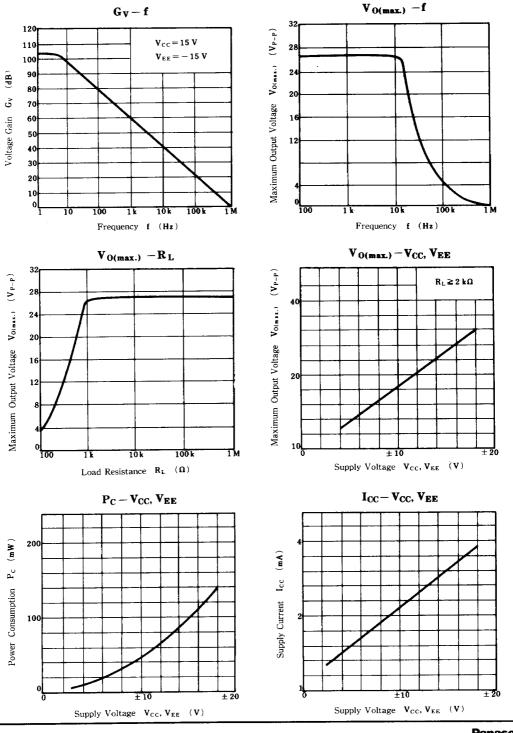

Note) When not specified in the above table, $V_{cc} = 15 V$ and $V_{ee} = -15 V$.

Test Circuit 2 (V_{O(max.)}, I_{O(short)})

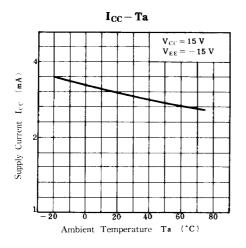

Panasonic

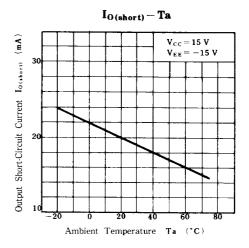
Test Circuit 3 (V_{CM})

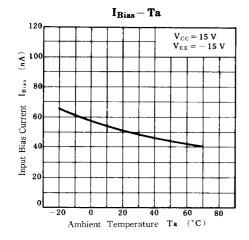



 $Note \vdash Apply \ a \ voltage \ of \mid v_{in}{}^+\mid > 12V \ and \ check \ V_o = V_{in}{}^+ + \frac{R_f}{R_s} (V_{in}{}^+ - V_{in}{}^-)$

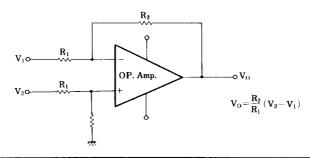
Test Circuit 4 (I_{CC}, P_C)




Test Circuit 5 (SR)



Panasonic



■ Application Circuit

Differential Amplifier Circuit

