

BYT 13-600 →1000

FAST RECOVERY RECTIFIER DIODES

- SOFT RECOVERY
- VERY HIGH VOLTAGE
- SMALL RECOVERY CHARGE

APPLICATIONS

- ANTISATURATION DIODES FOR TRANSIS-TOR BASE DRIVE
- SNUBBER DIODES

ABSOLUTE MAXIMUM RATINGS (limiting values)

Symbol	Parameter	Value	Unit			
I _{FRM}	Repetive Peak Forward Current	$t_p \le 20 \mu s$	50	Α		
I _{F (AV)}	Average Forward Current *	$T_a = 55^{\circ}C$ $\delta = 0.5$	3	А		
I _{FSM}	Surge non Repetitive Forward Current	t _p = 10ms Sinusoidal	100	А		
P _{tot}	Power Dissipation *	3.75	W			
T _{stg} T _j	Storage and Junction Temperature Range - 40 to + 150 - 40 to + 150					
TL	Maximum Lead Temperature for Soldering during 10s at 4mm from Case 230					

Symbol	Parameter		Unit		
Gyilliboi	T di diffetei	600	800	1000	
V_{RRM}	Repetitive Peak Reverse Voltage	600	800	1000	V

THERMAL RESISTANCE

Symbol	Parameter	Value	Unit
R _{th (j - a)}	Junction-ambient*	25	°C/W

^{*} On infinite heatsink with 10mm lead length.

August 1998 Ed : 1B 1/4

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS

,	Synbol		Min.	Тур.	Max.	Unit	
	I_R	T _j = 25°C	$V_R = V_{RRM}$			20	μΑ
	VF	T _j = 25°C	I _F = 3A			1.3	V

RECOVERY CHARACTERISTICS

Symbol		Test	Conditions	Min.	Тур.	Max.	Unit		
t _{rr}	T _j = 25°C	$I_F = 0.5A$	$I_R = 1A$	$I_{rr} = 0.25A$			150	ns	

To evaluate the conduction losses use the following equations:

 $V_F = 0.95 + 0.050 I_F$

 $P = 0.95 \times I_{F(AV)} + 0.050 I_{F^{2}(RMS)}$

Figure 1. Maximum average power dissipation versus average forward current.

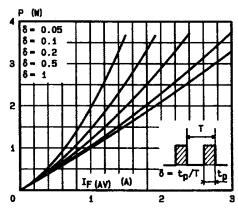


Figure 2. Average forward current versus ambient temperature.

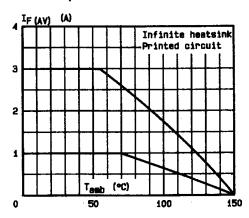
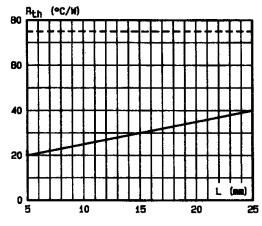
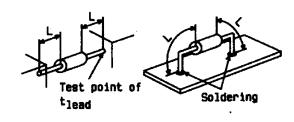




Figure 3. Thermal resistance versus lead length.

Mounting n°1
INFINITE HEATSINK

Mounting n°2 PRINTED CIRCUIT

2/4

Figure 4. Transient thermal impedance junction-ambient for mounting n^2 versus pulse duration (L = 10 mm).

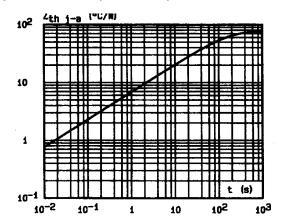


Figure 5. Peak forward current versus peak forward voltage drop (maximum values).

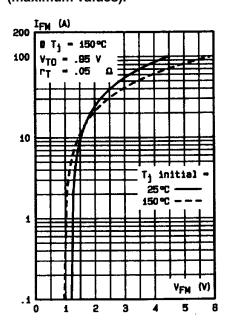


Figure 6. Capacitance versus reverse applied voltage

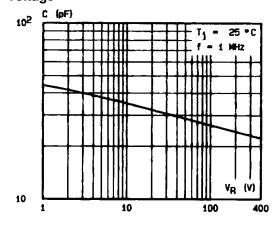
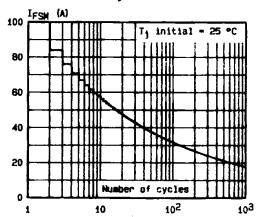
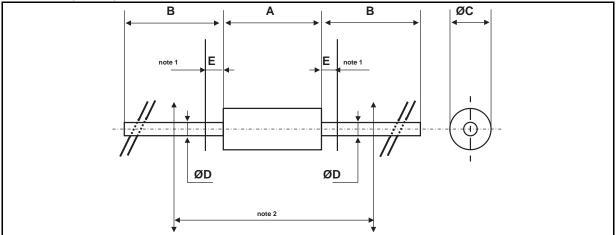




Figure 7. Non repetitive surge peak current versus number of cycles

PACKAGE MECHANICAL DATA

DO-201AD (Plastic)

REF.	DIMENSIONS				NOTES
	Millin	eters	Inches		
	Min.	Max.	Min.	Max.	
Α		9.50		0.374	1 - The lead diameter Ø D is not controlled over zone E
В	25.40		1.000		
ØC		5.30		0.209	2 - The minimum axial lengh within which the device may be placed with its leads bent at right angles is 0.59"(15 mm)
Ø D		1.30		0.051	placed with to loads both at right angles is 0.00 (10 min)
Е		1.25		0.049	

■ Marking: type number, white band indicates cathode

■ Cooling method : by convection (method A)

■ Weight: 1.166g

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval

of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1998 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

