

BY251 ~ BY255

MEDIUM CURRENT PLASTIC RECTIFIER DO-201AD Unit: inch(mm) VOLTAGE 200 to 1300 Volts CURRENT 3.0 Amperes FEATURES .052(1.3) · High current capability. .048(1.2) 1.0(25.4)MIN · Plastic package has Underwriters Laboratories Flammability Classification 94V-O • Void-free Plastic in DO-201AD package. • Exceeds environmental standards of MIL-S-19500/228 · Low leakage . • Lead free in comply with EU RoHS 2011/65/EU directives 375(9.5) 285(7.2) MECHANICAL DATA Case: Molded plastic, DO-201AD .210(5.3) • Terminals: Axial leads, solderable to MIL-STD-750, Method 2026 .188(4.8) I.0(25.4)MIN. • Polarity: Color Band denotes cathode end • Mounting Position: Any • Weight: 0.0395 ounce, 1.122 grams

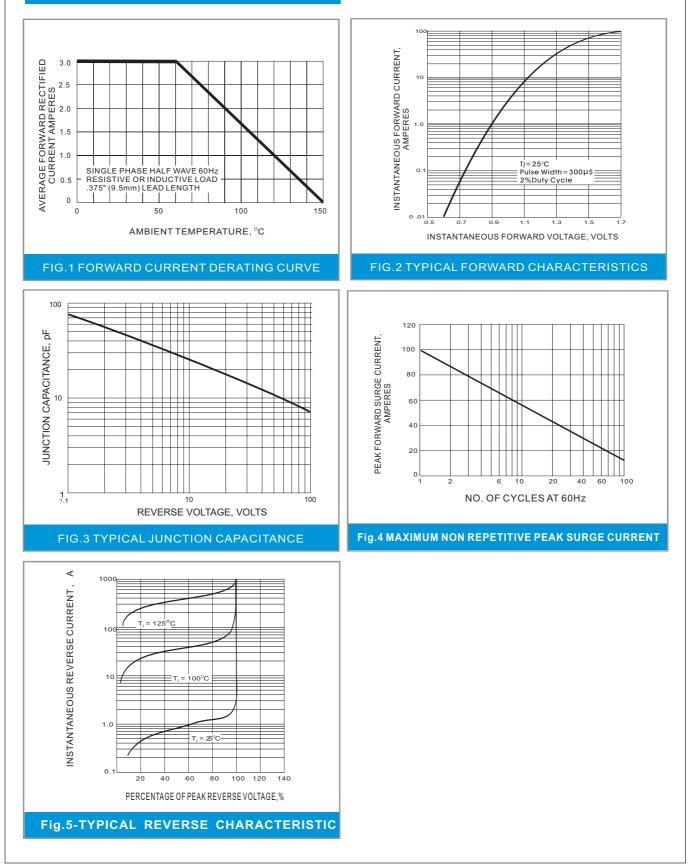
MAXIMUM RATINGSAND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load, 60Hz.

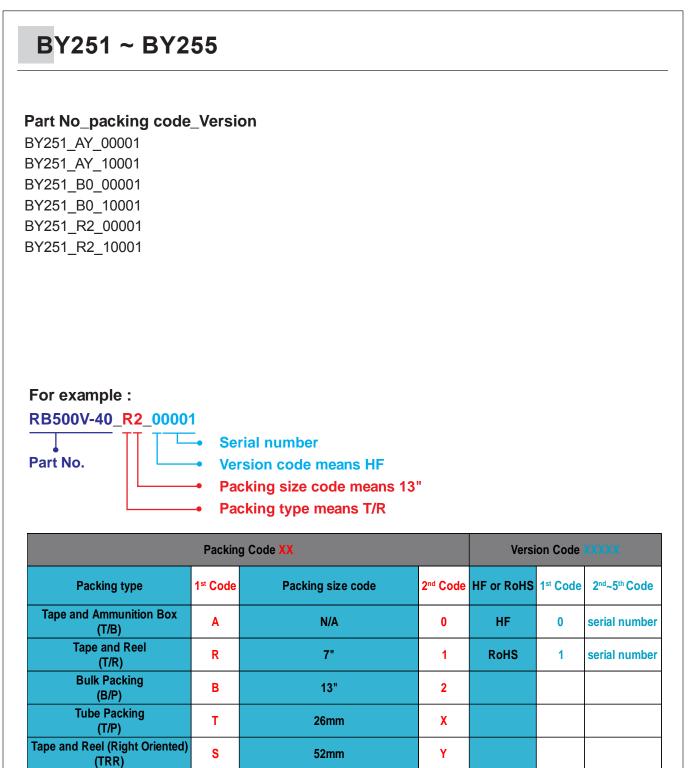
SYMBOL	BY251	BY252	BY253	BY254	BY255	UNITS
$V_{_{RRM}}$	200	400	600	800	1300	V
V _{rms}	140	280	420	560	910	V
V _{DC}	200	400	600	800	1300	V
I _{F(AV)}	3.0					А
I _{fsm}	100					А
V _F	1.1					V
I _R	5.0 1000					μΑ
C	40					pF
$R_{_{\theta JA}}$	15					°C / W
T _J ,T _{stg}	-55 to +150					°C
	V _{RRM} V _{RMS} V _{DC} I _{F(AV)} I _{FSM} V _F I _R C _J R _{8JA}	V _{RRM} 200 V _{RMS} 140 V _{DC} 200 I _{F(AV)} 200 I _{FSM} 1 V _F 1 I _R 1 C _J 1 R _{BJA} 1	V 200 400 V 140 280 V 200 400 V 200 400 V 200 400 I 200 100 I 200<	V_{RRM} 200 400 600 V_{RMS} 140 280 420 V_{DC} 200 400 600 V_{DC} 200 400 600 $I_{F(AV)}$ 200 100 3.0 I_{FSM} 100 1.1 I_R 5.0 1000 C_J 40 15	V 200 400 600 800 V 140 280 420 560 V 200 400 600 800 I	V 200 400 600 800 1300 V 140 280 420 560 910 V 200 400 600 800 1300 V 200 400 600 800 1300 V 200 400 600 800 1300 I 500 3.0 1300 1300 I 5.0 100 500 100 V 7 1.1 100 100 I 100 40 40 100 C 40 15 100 100

NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.


2. Thermal resistance from junction to ambient.

3.Reverse Recovery Test Conditions:IF=0.5A , IR=1.0A ,Irr=0.25A



BY251 ~ BY255

RATING AND CHARACTERISTIC CURVES

PANASERT T/B CATHODE UP

(PBCU) PANASERT T/B CATHODE DOWN

(PBCD)

U

D

Tape and Reel (Left Oriented)

(TRL)

FORMING

L

F

BY251 ~ BY255

Disclaimer

- Reproducing and modifying information of the document is prohibited without permission from Panjit International Inc..
- Panjit International Inc. reserves the rights to make changes of the content herein the document anytime without notification. Please refer to our website for the latest document.
- Panjit International Inc. disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- Panjit International Inc. does not assume any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the herein document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications. Panjit International Inc. makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- The products shown herein are not designed and authorized for equipments requiring high level of reliability or relating to human life and for any applications concerning life-saving or life-sustaining, such as medical instruments, transportation equipment, aerospace machinery et cetera. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Panjit International Inc. for any damages resulting from such improper use or sale.
- Since Panjit uses lot number as the tracking base, please provide the lot number for tracking when complaining.