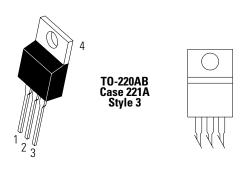



# **MCR310**






### **Description**

Designed for industrial and consumer applications such as temperature, light and speed control; process and remote controls; warning systems; capacitive discharge circuits and MPU interface.

#### **Features**

- Center Gate Geometry for Uniform Current Density
- All Diffused and Glass-Passivated Junctions for Parameter Uniformity and Stability
- Small, Rugged, Thermowatt Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Low Trigger Currents, 200 µA Maximum for Direct Driving from Integrated Circuits
- Pb–Free Packages are Available

### **Pin Out**



### **Functional Diagram**



### **Additional Information**







sources

Samples

# **Thyristors** Surface Mount -400 - 800V > MCR310

### Maximum Ratings (T<sub>J</sub> = 25°C unless otherwise noted)

| Rating                                                                                                       | Part Number                       | Symbol             | Value              | Unit |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------|--------------------|------|
| Peak Repetitive Off-State Voltage (Note 1) $(T_J = -40 \text{ to } +125^{\circ}\text{C}, \text{ Gate Open})$ | MCR310-6<br>MCR310-8<br>MCR310-10 | V <sub>DRM</sub> , | 400<br>600<br>800  | V    |
| On-State RMS Current (T <sub>c</sub> = 75°C)                                                                 | I <sub>T (RMS)</sub>              | 10                 | А                  |      |
| Peak Non-Repetitive Surge Current (1/2 Cycle, 60 Hz, $T_J = -40$ to 110°C)                                   | I <sub>TSM</sub>                  | 100                | А                  |      |
| Circuit Fusing (t = 8.3 ms)                                                                                  | l²t                               | 40                 | A <sup>2</sup> sec |      |
| Peak Gate Voltage (t ≤ 10 μs)                                                                                | V <sub>GM</sub>                   | ±5                 | V                  |      |
| Peak Gate Current (t ≤ 10 μs)                                                                                | I <sub>GM</sub>                   | 1                  | А                  |      |
| Peak Gate Power (t ≤ 10 µs)                                                                                  | P <sub>GM</sub>                   | 5                  | W                  |      |
| Average Gate Power                                                                                           | P <sub>G (AV)</sub>               | 0.75               | W                  |      |
| Operating Junction Temperature Range                                                                         | T <sub>J</sub>                    | -40 to +110        | °C                 |      |
| Storage Temperature Range                                                                                    | T <sub>stg</sub>                  | -40 to +150        | °C                 |      |
| Mounting Torque                                                                                              | -                                 | 8.0                | in. lb.            |      |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating

### **Thermal Characteristics**

| Characterstic                           | Symbol           | Value | Unit |  |
|-----------------------------------------|------------------|-------|------|--|
| Thermal Resistance, Junction-to-Case    | R <sub>euc</sub> | 2.2   | °C/W |  |
| Thermal Resistance, Junction-to-Ambient | R <sub>eJA</sub> | 60    |      |  |

## **Electrical Characteristics** ( $T_c = 25$ °C, $R_{gK} = 1 \text{ k}\Omega$ unless otherwise noted)

| Characteristic                                                                                                         |                        | Symbol             | Min      | Тур      | Max      | Unit |
|------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------|----------|----------|----------|------|
| Peak Forward Blocking Current (Note 1)                                                                                 | T <sub>C</sub> = 110°C | - I <sub>DRM</sub> | -        | -        | 500      | μА   |
| $(T_J = 110^{\circ}C, V_D = Rated V_{DRM})$                                                                            | T <sub>C</sub> = 25°C  |                    | -        | _        | 10       |      |
| Peak Reverse Blocking Current (Note 1)                                                                                 | T <sub>C</sub> = 110°C | _                  | -        | _        | 500      | μА   |
| $(T_J = 110^{\circ}C, V_R = Rated V_{DRM})$                                                                            | T <sub>C</sub> = 25°C  | I <sub>RRM</sub> _ | -        | _        | 10       |      |
| On-State Voltage (I <sub>TM</sub> = 20 A Peak, Pulse Width ≤ 1 ms, Duty Cycle ≤ 2%)                                    |                        | V <sub>TM</sub>    | -        | 1.7      | 2.2      | V    |
| Gate Trigger Current Continuous dc (Note 2) ( $V_D = 12 \text{ Vdc}$ , $R_L = 100 \Omega$ )                            |                        | I <sub>GT</sub>    | -        | 30       | 200      | μА   |
| Gate Trigger Voltage, Continuous dc $(V_D = Rated V_{DRM'}, R_L = 10 k\Omega, T_J = 110 ^{\circ}C)$                    |                        | V <sub>GT</sub>    | -<br>0.1 | 0.5<br>- | 1.5<br>- | mA   |
| Holding Current ( $V_D = 12 \text{ V, I}_{TM} = 100 \text{ mA}$ )                                                      |                        | I <sub>H</sub>     | -        | -        | 6        | mA   |
| Critical Rate of Rise of Forward Blocking Voltage $(V_D = Rated\ V_{DRM'}\ T_J = 110^{\circ}C$ , Exponential Waveform) |                        | dv/dt              | -        | 10       | _        | V/µs |
| Gate Controlled Turn-On Time $(V_D = Rated V_{DRM'} I_{TM} = 20 A, I_G = 2 mA)$                                        |                        | t <sub>gt</sub>    | -        | 1        | _        | μs   |

<sup>1.</sup> Ratings apply for negative gate voltage or RGK = 1  $k\Omega$ . Devices shall not have a positive gate voltage concurrently with a negative voltage on the anode. Devices should not be tested with a constant current source for forward and reverse blocking capability such that the voltage applied exceeds the rated blocking voltage.

Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. VDRM and VRRM for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

<sup>2.</sup> Does not include RGK current.



**Figure 1. Typical RMS Current Derating** 

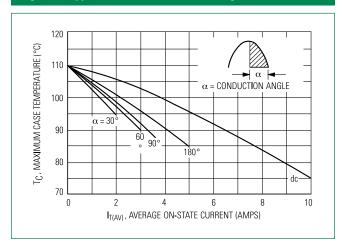



Figure 2. Peak Capacitor Discharge Current Derating

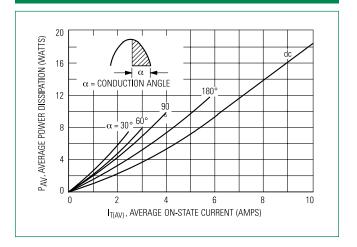



Figure 3. Current Derating

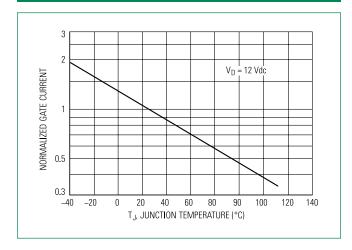
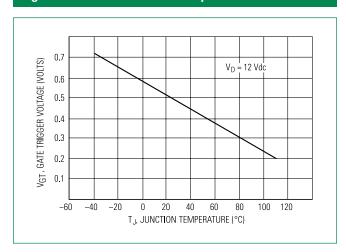
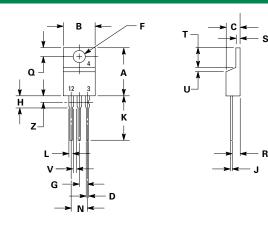
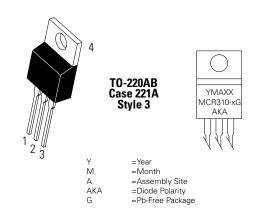





Figure 4. Maximum Power Dissipation






#### **Dimensions**



## **Part Marking System**



| Di  | Inches |       | Millimeters |       |
|-----|--------|-------|-------------|-------|
| Dim | Min    | Max   | Min         | Max   |
| Α   | 0.590  | 0.620 | 14.99       | 15.75 |
| В   | 0.380  | 0.420 | 9.65        | 10.67 |
| С   | 0.178  | 0.188 | 4.52        | 4.78  |
| D   | 0.025  | 0.035 | 0.64        | 0.89  |
| F   | 0.142  | 0.147 | 3.61        | 3.73  |
| G   | 0.095  | 0.105 | 2.41        | 2.67  |
| Н   | 0.110  | 0.130 | 2.79        | 3.30  |
| J   | 0.018  | 0.024 | 0.46        | 0.61  |
| K   | 0.540  | 0.575 | 13.72       | 14.61 |
| L   | 0.060  | 0.075 | 1.52        | 1.91  |
| N   | 0.195  | 0.205 | 4.95        | 5.21  |
| Q   | 0.105  | 0.115 | 2.67        | 2.92  |
| R   | 0.085  | 0.095 | 2.16        | 2.41  |
| s   | 0.045  | 0.060 | 1.14        | 1.52  |
| Т   | 0.235  | 0.255 | 5.97        | 6.47  |
| U   | 0.000  | 0.050 | 0.00        | 1.27  |
| V   | 0.045  |       | 1.15        |       |
| Z   | _      | 0.080 |             | 2.04  |

| Pin Assignment |         |  |
|----------------|---------|--|
| 1              | Cathode |  |
| 2              | Anode   |  |
| 3              | Gate    |  |
| 4              | Anode   |  |

| <br>lering    | -       | 4: |
|---------------|---------|----|
| Tald I a to I | 1444751 |    |
|               |         |    |

| Device     | Package               | Shipping        |  |
|------------|-----------------------|-----------------|--|
| MCR310-6   | TO-220AB              |                 |  |
| MCR310-6G  | TO-220AB<br>(Pb-Free) |                 |  |
| MCR310-8   | TO-220AB              |                 |  |
| MCR310-8G  | TO-220AB<br>(Pb-Free) | 500 Units / Box |  |
| MCR310-10  | TO-220AB              |                 |  |
| MCR310-10G | TO-220AB<br>(Pb-Free) |                 |  |

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
  3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at <a href="http://www.littelfuse.com/disclaimer-electronics">http://www.littelfuse.com/disclaimer-electronics</a>.