J309, J310

Preferred Device

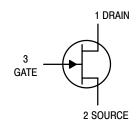
JFET VHF/UHF Amplifiers

N-Channel — Depletion

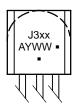
Features

• Pb-Free Packages are Available*

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Gate-Source Voltage	V _{GS}	25	Vdc
Forward Gate Current	I _{GF}	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above = 25°C	P _D	350 2.8	mW mW/°C
Junction Temperature Range	TJ	-65 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

J3xx = Device Code

xx = 09 or 10

A = Assembly Location

Y = Year

WW = Work Week

= Pb-Free Package(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

J309, J310

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	I		<u> </u>			
Gate – Source Breakdown Voltage ($I_G = -1.0 \mu Adc, V_{DS} = 0$)		V _{(BR)GSS}	-25	_	_	Vdc
Gate Reverse Current $(V_{GS} = -15 \text{ Vdc}, V_{DS} = 0, T_A = 25^{\circ}\text{C})$ $(V_{GS} = -15 \text{ Vdc}, V_{DS} = 0, T_A = +125^{\circ}\text{C})$		I _{GSS}	_ _	_ _	-1.0 -1.0	nAdc μAdc
Gate Source Cutoff Voltage (V _{DS} = 10 Vdc, I _D = 1.0 nAdc)	J309 J310	V _{GS(off)}	-1.0 -2.0	- -	-4.0 -6.5	Vdc
ON CHARACTERISTICS						
Zero-Gate-Voltage Drain Current ⁽¹⁾ (V _{DS} = 10 Vdc, V _{GS} = 0)	J309 J310	I _{DSS}	12 24	_ _	30 60	mAdc
Gate-Source Forward Voltage (V _{DS} = 0, I _G = 1.0 mAdc)		$V_{GS(f)}$	_	-	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS	•		•	•	•	•
Common–Source Input Conductance (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 100 MHz)	J309 J310	Re(y _{is})	_ _	0.7 0.5	- -	mmhos
Common–Source Output Conductance (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 100 MHz)		Re(y _{os})	_	0.25	-	mmhos
Common–Gate Power Gain (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 100 MHz)		G _{pg}	_	16	-	dB
Common–Source Forward Transconductance (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 100 MHz)		Re(y _{fs})	_	12	_	mmhos
Common–Gate Input Conductance $(V_{DS} = 10 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 100 \text{ MHz})$		Re(y _{ig})	_	12	_	mmhos
Common–Source Forward Transconductance ($V_{DS} = 10 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 1.0 \text{ kHz}$)	J309 J310	9fs	10000 8000	- -	20000 18000	μmhos
Common–Source Output Conductance ($V_{DS} = 10 \text{ Vdc}$, $I_D = 10 \text{ mAdc}$, $f = 1.0 \text{ kHz}$)		9 _{os}	_	_	250	μmhos
Common–Gate Forward Transconductance $(V_{DS} = 10 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 1.0 \text{ kHz})$	J309 J310	9 _{fg}	_ _	13000 12000	- -	μmhos
Common–Gate Output Conductance $(V_{DS} = 10 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 1.0 \text{ kHz})$	J309 J310	9og	- -	100 150	_ _	μmhos
Gate-Drain Capacitance $(V_{DS} = 0, V_{GS} = -10 \text{ Vdc}, f = 1.0 \text{ MHz})$		C_{gd}	_	1.8	2.5	pF
Gate-Source Capacitance (V _{DS} = 0, V _{GS} = -10 Vdc, f = 1.0 MHz)		C _{gs}	_	4.3	5.0	pF
FUNCTIONAL CHARACTERISTICS	<u>'</u>					
Equivalent Short–Circuit Input Noise Voltage (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 100 Hz)		e _n	_	10	_	nV/√ Hz

^{1.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 3.0%.

ORDERING INFORMATION

Device	Package	Shipping [†]
J309	TO-92	
J309G	TO-92 (Pb-Free)	1000 Units / Bulk
J310	TO-92	
J310G	TO-92 (Pb-Free)	1000 Units / Bulk
J310RLRP	TO-92	
J310RLRPG	TO-92 (Pb-Free)	2000 Units / Tape & Ammo Box
J310ZL1	TO-92	
J310ZL1G	TO-92 (Pb-Free)	2000 Units / Tape & Ammo Box

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

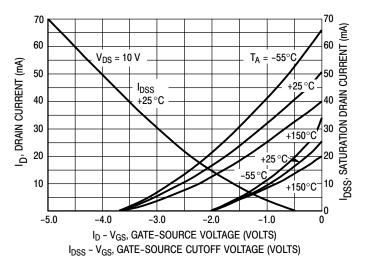


Figure 1. Drain Current and Transfer Characteristics versus Gate-Source Voltage

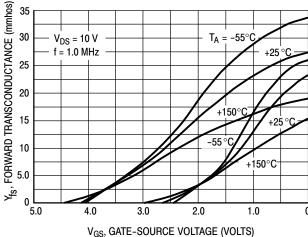


Figure 2. Forward Transconductance versus Gate-Source Voltage

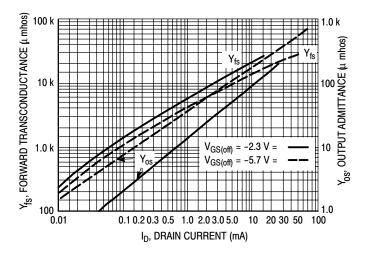


Figure 3. Common–Source Output
Admittance and Forward Transconductance
versus Drain Current

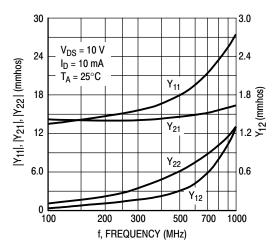


Figure 5. Common-Gate Y Parameter Magnitude versus Frequency

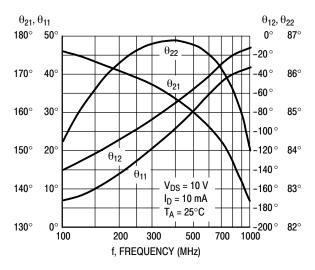


Figure 7. Common-Gate Y Parameter Phase-Angle versus Frequency

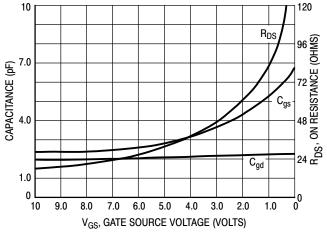


Figure 4. On Resistance and Junction Capacitance versus Gate-Source Voltage

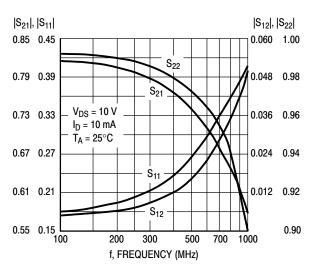


Figure 6. Common-Gate S Parameter Magnitude versus Frequency

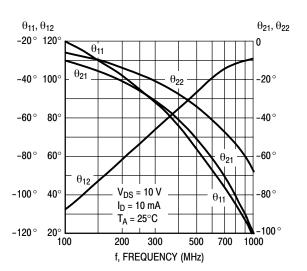
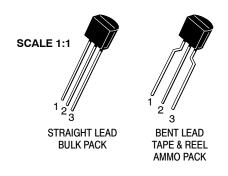
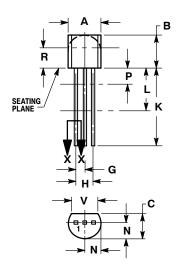
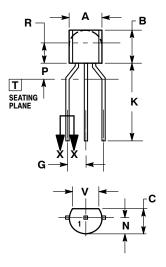




Figure 8. S Parameter Phase–Angle versus Frequency

TO-92 (TO-226) CASE 29-11 **ISSUE AM**

DATE 09 MAR 2007



STRAIGHT LEAD **BULK PACK**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
Р		0.100		2.54
R	0.115		2.93	
v	0.135		3 43	

BENT LEAD TAPE & REEL AMMO PACK

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	MILLIMETERS		
DIM	MIN	MAX	
Α	4.45	5.20	
В	4.32	5.33	
С	3.18	4.19	
D	0.40	0.54	
G	2.40	2.80	
J	0.39	0.50	
K	12.70		
N	2.04	2.66	
P	1.50	4.00	
R	2.93		
V	3.43		

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42022B	Electronic versions are uncontrolle	t Repository. Printed	
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except		
NEW STANDARD:		"CONTROLLED COPY" in red.		
DESCRIPTION:	TO-92 (TO-226)		PAGE 1 OF 3	

TO-92 (TO-226) CASE 29-11

ISSUE AM

DATE 09 MAR 2007

STYLE 1: PIN 1. 2. 3.	EMITTER BASE COLLECTOR	STYLE 2: PIN 1. 2. 3.	BASE EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3.	ANODE ANODE CATHODE	STYLE 4: PIN 1. 2. 3.	CATHODE CATHODE ANODE	STYLE 5: PIN 1. 2. 3.	DRAIN SOURCE GATE
STYLE 6: PIN 1. 2. 3.	GATE SOURCE & SUBSTRATE DRAIN	STYLE 7: PIN 1. 2. 3.	SOURCE DRAIN GATE	STYLE 8: PIN 1. 2. 3.	DRAIN GATE SOURCE & SUBSTRATE	STYLE 9: PIN 1. 2. 3.	BASE 1 EMITTER BASE 2	STYLE 10: PIN 1. 2. 3.	CATHODE GATE
STYLE 11: PIN 1. 2. 3.	ANODE CATHODE & ANODE CATHODE	STYLE 12: PIN 1. 2. 3.	MAIN TERMINAL 1 GATE MAIN TERMINAL 2	STYLE 13: PIN 1. 2. 3.	ANODE 1 GATE CATHODE 2	STYLE 14: PIN 1. 2. 3.	EMITTER COLLECTOR BASE	PIN 1. 2.	
2.	ANODE GATE CATHODE	2.	BASE	2.	ANODE CATHODE NOT CONNECTED	2.	ANODE	2.	NOT CONNECTED
PIN 1. 2.	COLLECTOR	PIN 1. 2.	SOURCE GATE DRAIN	STYLE 23: PIN 1. 2. 3.	GATE SOURCE DRAIN	STYLE 24: PIN 1. 2. 3.	EMITTER COLLECTOR/ANODE CATHODE		MT 1 GATE
		2.	MT SUBSTRATE MT	2.		PIN 1. 2.	ANODE	STYLE 30: PIN 1. 2. 3.	DRAIN GATE
	GATE	PIN 1. 2.	BASE COLLECTOR EMITTER	STYLE 33: PIN 1. 2. 3.	RETURN	2.			

DOCUMENT NUMBER:	98ASB42022B	Electronic versions are uncontrolle		
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except	' '	
NEW STANDARD:		"CONTROLLED COPY" in red.		
DESCRIPTION:	TO-92 (TO-226)		PAGE 2 OF 3	

DOCUMENT	NUMBER:
08 V S B 42022	R

PAGE 3 OF 3

ISSUE	REVISION	DATE
AM	ADDED BENT-LEAD TAPE & REEL VERSION. REQ. BY J. SUPINA.	09 MAR 2007

ON Semiconductor and 💵 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. arising out of the application of use of any product or circuit, and specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death. associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative