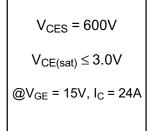

IRGPC40MD2


INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE

Features

- Short circuit rated -10 μ s @125°C, V $_{GE}$ = 15V
- · Switching-loss rating includes all "tail" losses
- HEXFRED™ soft ultrafast diodes
- Optimized for medium operating frequency (1 to 10kHz)

Short Circuit Rated Fast CoPack IGBT

Description

Co-packaged IGBTs are a natural extension of International Rectifier's well known IGBT line. They provide the convenience of an IGBT and an ultrafast recovery diode in one package, resulting in substantial benefits to a host of high-voltage, high-current, applications.

These new short circuit rated devices are especially suited for motor control and other applications requiring short circuit withstand capability.

Absolute Maximum Ratings

	Parameter	Max.	Units	
V _{CES}	Collector-to-Emitter Voltage	600	V	
I _C @ T _C = 25°C	Continuous Collector Current	40		
I _C @ T _C = 100°C	Continuous Collector Current	24		
I _{CM}	Pulsed Collector Current ①	80	Α	
I _{LM}	Clamped Inductive Load Current ②	80		
I _F @ T _C = 100°C	Diode Continuous Forward Current	15		
I _{FM}	Diode Maximum Forward Current	80		
t _{sc}	Short Circuit Withstand Time	10	μs	
V_{GE}	Gate-to-Emitter Voltage	± 20	V	
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation	160	W	
P _D @ T _C = 100°C	Maximum Power Dissipation	65		
TJ	Operating Junction and	-55 to +150		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)		
	Mounting Torque, 6-32 or M3 Screw.	10 lbf•in (1.1 N•m)		

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case - IGBT	_	_	0.77	
$R_{\theta JC}$	Junction-to-Case - Diode	_	_	1.7	°C/W
$R_{\theta CS}$	Case-to-Sink, flat, greased surface	_	0.24	_	
$R_{\theta JA}$	Junction-to-Ambient, typical socket mount	_	_	40	
Wt	Weight	_	6 (0.21)	_	g (oz)

Revision 2

IRGPC40MD2

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions		
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage 3	600	_	_	V	V _{GE} = 0V, I _C = 250μA		
$\Delta V_{(BR)CES}/\Delta T_J$	Temperature Coeff. of Breakdown Voltage	_	0.70	_	V/°C	$V_{GE} = 0V, I_{C} = 1.0mA$		
V _{CE(on)}	Collector-to-Emitter Saturation Voltage	_	2.0	3.0		I _C = 24A V _{GE} = 15V		
		_	2.6	_	V	I _C = 40A		
		_	2.4	_		I _C = 24A, T _J = 150°C		
$V_{GE(th)}$	Gate Threshold Voltage	3.0	_	5.5		$V_{CE} = V_{GE}$, $I_C = 250\mu A$		
$\Delta V_{GE(th)}/\Delta T_J$	Temperature Coeff. of Threshold Voltage	_	-12	_	mV/°C	$V_{CE} = V_{GE}$, $I_C = 250\mu A$		
g _{fe}	Forward Transconductance ④	9.2	12	_	S	V _{CE} = 100V, I _C = 24A		
I _{CES}	Zero Gate Voltage Collector Current	_	_	250	μA	$V_{GE} = 0V, V_{CE} = 600V$		
		_	_	3500		$V_{GE} = 0V, V_{CE} = 600V, T_{J} = 150^{\circ}C$		
V_{FM}	Diode Forward Voltage Drop	_	1.3	1.7	V	I _C = 15A		
		_	1.2	1.6		I _C = 15A, T _J = 150°C		
I _{GES}	Gate-to-Emitter Leakage Current	_	_	±100	nΑ	$V_{GF} = \pm 20V$		

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditio	ıs	
Q_g	Total Gate Charge (turn-on)	_	59	80		I _C = 24A		
Qge	Gate - Emitter Charge (turn-on)	_	8.6	10	nC	V _{CC} = 400V		
Q _{gc}	Gate - Collector Charge (turn-on)	_	25	42				
t _{d(on)}	Turn-On Delay Time	_	26	_		T _J = 25°C		
t _r	Rise Time	_	37	_	ns	$I_C = 24A, V_{CC} = 480V$		
t _{d(off)}	Turn-Off Delay Time	_	240	410		V_{GE} = 15V, R_G = 10 Ω		
t _f	Fall Time	_	230	420		Energy losses include '	'tail" and	
Eon	Turn-On Switching Loss	_	0.75	_		diode reverse recovery		
E _{off}	Turn-Off Switching Loss	_	1.65	_	mJ			
E _{ts}	Total Switching Loss	_	2.4	3.6				
t _{sc}	Short Circuit Withstand Time	10	_	_	μs	V _{CC} = 360V, T _J = 125°	С	
						$V_{GE} = 15V, R_G = 10\Omega,$	V _{CPK} < 500V	
t _{d(on)}	Turn-On Delay Time	_	28	_		T _J = 150°C,		
r	Rise Time	_	37	_	ns	I _C = 24A, V _{CC} = 480V		
t _{d(off)}	Turn-Off Delay Time	_	380	_		$V_{GE} = 15V, R_G = 10\Omega$		
t _f	Fall Time	_	460	_		Energy losses include '	'tail" and	
E _{ts}	Total Switching Loss	_	4.5	_	mJ	diode reverse recovery	<u>.</u>	
LE	Internal Emitter Inductance	_	13	_	nΗ	Measured 5mm from package		
C _{ies}	Input Capacitance	_	1500	_		V _{GE} = 0V		
Coes	Output Capacitance	_	190	_	pF	V _{CC} = 30V		
C _{res}	Reverse Transfer Capacitance	_	20	_		f = 1.0MHz		
t _{rr}	Diode Reverse Recovery Time	_	42	60	ns	T _J = 25°C		
		_	74	120	1	T _J = 125°C	I _F = 15A	
I _{rr}	Diode Peak Reverse Recovery Current	_	4.0	6.0	Α	T _J = 25°C		
		_	6.5	10	1	T _J = 125°C	$V_{R} = 200V$	
Q _{rr}	Diode Reverse Recovery Charge	_	80	180	nC	T _J = 25°C		
		_	220	600	1	T _J = 125°C	di/dt = 200A/µs	
di _{(rec)M} /dt	Diode Peak Rate of Fall of Recovery	_	188	_	A/µs	T _J = 25°C		
, ,	During t _b	_	160	_	1	T _J = 125°C		

Notes: ① Repetitive rating; V GE=20V, pulse width limited ② V_{CC}=80%(V_{CES}), V_{GE}=20V, L=10μH, ④ Pulse width 5.0μs, $R_G = 10\Omega$. by max. junction temperature.

Refer to Section D for the following: ³ Pulse width $\leq 80 \mu s$; duty factor $\leq 0.1\%$. Package Outline 3 - JEDEC Outline TO-247AC

Section D - page D-13