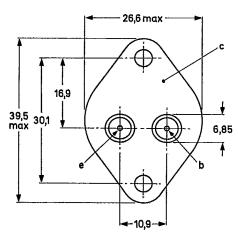
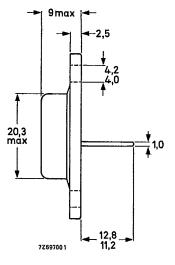
T-33-29

SILICON DARLINGTON POWER TRANSISTORS

N-P-N epitaxial base transistors in monolithic Darlington circuit for audio output stages and general amplifier and switching applications; TO-3 envelope, P-N-P complements are BDX62, BDX62A, BDX62B and BDX62C.

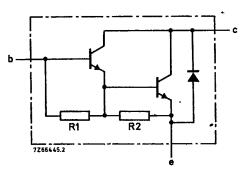

QUICK REFERENCE DATA


			BDX63	63A	63B	63C	
Collector-base voltage (open emitter)	V _{CBO}	max.	80	100	120	140	V
Collector-emitter voltage (open base)	V _{CEO}	max.	60	80	100	120	V
Collector current (peak value)	^I CM	max.		,	2		Α
Total power dissipation up to							-
T _{mb} = 25 °C	P _{tot}	max.		90			W
Junction temperature	Τį	max.		20	00		οС
D.C. current gain	•						
I _C = 0,5 A; V _{CE} = 3 V	hFE	typ.		250	00		
I _C = 3,0 A; V _{CE} = 3 V	hFE	>		100	00		
Cut-off frequency							
I _C = 3 A; V _{CE} = 3 V	fhfe	typ.		10	00		kHz

MECHANICAL DATA

Fig. 1 TO-3.

Collector connected to case.



See also chapters Mounting Instructions and Accessories.

August 1983

Dimensions in mm

T-33-29

R1 typ. $8 \text{ k}\Omega$ R2 typ. 100Ω

Fig. 2 Circuit diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BDX63	63A	63B	63C	
Collector-base voltage (open emitter)	VCBO	max.	80	100	120	140	٧
Collector-emitter voltage (open-base)	VCEO	max.	60	80	100	120	٧
Emitter-base voltage (open collector)	V_{EBO}	max.	5	5	5	5	٧
Collector current (d.c.)	l _C	max.		8			Α
Collector current (peak value)	^I CM	max.		1	2		Α
Base current (d.c.)	۱ _B	max.		15	50		mΑ
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		ę	90		w
Storage temperature	T _{stg}		-6	-65 to +200		oC	
Junction temperature*	Тj	max.		20	00		оС
THERMAL RESISTANCE *							
From junction to mounting base	R _{th j-mb}	=		1,9	94		K/W

732

^{*} Based on maximum average junction temperature in line with common industrial practice. The resulting higher junction temperature of the output transistor part is taken into account.

Silicon Darlington power transistors

■ 6653931 0019959 T 25E D

BDX63; 63A BDX63B; 63C

CHARACTERISTICS	•	•	T-33-29	•
T _i = 25 °C unless otherwise specified			,	
Collector cut-off current				
I _E = 0; V _{CB} = V _{CEOmax}	Ісво	<	0,2 mA	
I _E = 0; V _{CB} = ½V _{CBOmax} ; T _i = 200 °C	Ісво	<	2 mA	
IB = 0; VCE = ½VCEOmax	ICEO	<	0,2 mA .	← —
Emitter cut-off current	•			
$I_C = 0$; $V_{EB} = 5 V$	^I EBO	<	5 mA	
D.C. current gain (note 1)				
$I_C = 0.5 \text{ A; } V_{CE} = 3 \text{ V}$	ηFE	typ.	2500	
$I_C = 3 A; V_{CE} = 3 V$	μŁΕ	>	1000	
$I_C = 8 A; V_{CE} = 3 V$	hFE	typ.	2600	
Base-emitter voltage (notes 1 and 2)	V/	,	05.1/	
I _C = 3 A; V _{CE} = 3 V	V _{BE}	<	2,5 V	
Collector-emitter saturation voltage (note 1) $I_C = 3 A$; $I_B = 12 mA$	V _{CEsat}	<	2 V -	
Collector capacitance at f = 1 MHz	_			
$I_E = I_e = 0; V_{CB} = 10 \text{ V}$	C _C	typ.	100 pF	
Cut-off frequency	f	typ.	100 kHz	
Turn-off breakdown energy with inductive load (Fig. 4)	^f hfe	ųρ.	100 KHZ	
$-1_{\text{Boff}} = 0$; $1_{\text{Con}} = 4.5 \text{ A}$; $t_{\text{p}} = 1 \text{ ms}$;				
T = 100 ms	E(BR)	>	50 mJ	
Small signal current gain				
$I_C = 3 A$; $V_{CE} = 3 V$; $f = 1 MHz$	h _{fe}	typ.	100	
Diode, forward voltage				
l _F = 3 A	٧F	typ.	1,2 V	

July 1988

Notes 1. Measured under pulse conditions: $t_p < 300~\mu s,\, \delta < 2\%.$ 2. V_{BE} decreases by about 3,6 mV/K with increasing temperature.

T-33-29

CHARACTERISTICS (continued)

Switching times
(between 10% and 90% levels)
ICon = 3 A; IBon = -IBoff = 12 mA
turn-on time
turn-off time

 $t_{\mbox{on}}$ typ. 0,5 μ s $t_{\mbox{off}}$ typ. 5 μ s

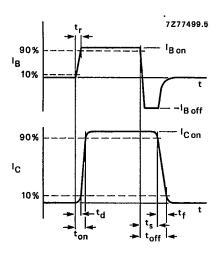


Fig. 3 Switching time waveforms.

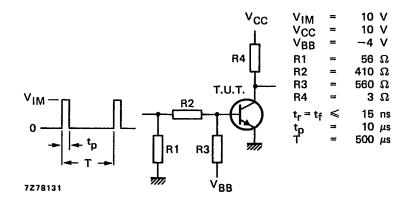


Fig. 4 Switching times test circuit.

734

October 1985

25E D 📟 6653931 0019961 8

BDX63; 63A BDX63B; 63C

T-33-29

Diode, forward voltage 1F = 3 A

typ. 1,2 V

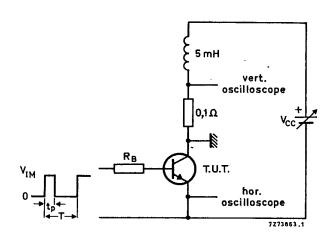


Fig. 5 Test circuit for turn-off breakdown energy. $V_{1M} = 12 \text{ V}$; $R_B = 270 \Omega$; $I_{CC} = 4.5 \text{ A}$; $t_p = 1 \text{ ms}$; $\delta = 1\%$.

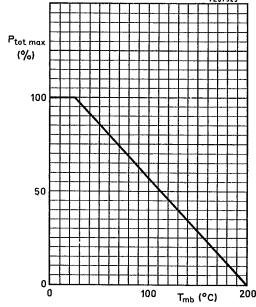


Fig. 6 Power derating curve.

Fig. 7.

April 1981

■ 6653931 0019962 T 🖿

BDX63; 63A BDX63B; 63C

T-33-29

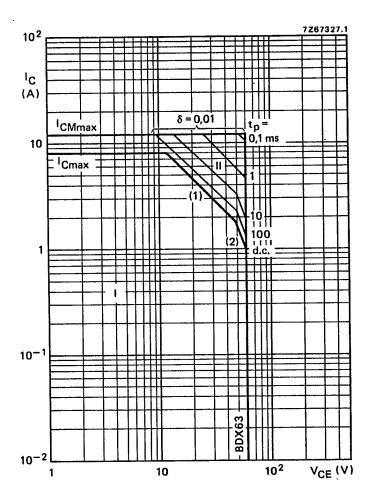
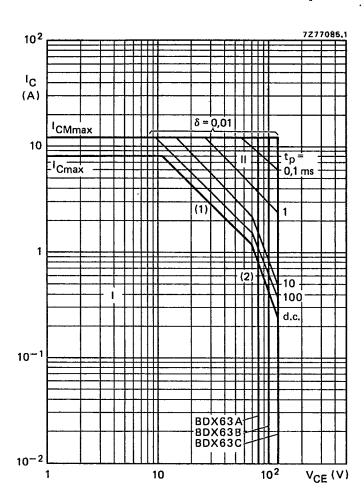


Fig. 8 Safe Operating ARea, $T_{mb} \le 25$ °C.


- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation. 11
- P_{tot max} and P_{peak max} lines. Second-breakdown limits.

736

Silicon Darlington power transistors

■ 6653931 0019963 1 ■ BDX63; 63A BDX63B; 63C

T-33-29

25E D

Fig. 9 Safe Operating ARea, $T_{mb} \le 25$ °C.

- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation.
- Ptot max and Ppeak max lines.
 Second-breakdown limits.

April 1981

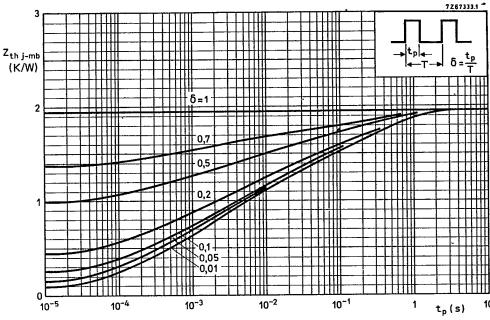


Fig. 10 Pulse power rating chart.

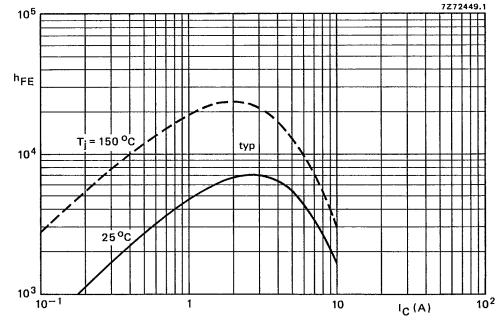


Fig. 11 Typical values d.c. current gain at $V_{CE} = 3 V$.

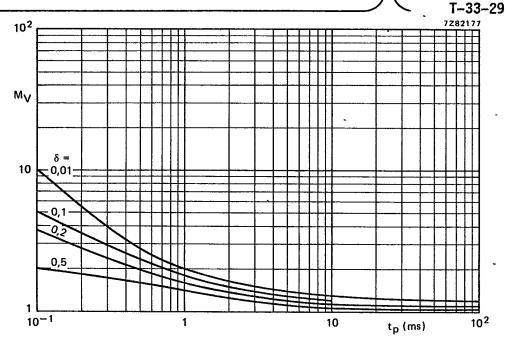


Fig. 12 S.B. voltage multiplying factor at the $I_{\mbox{\footnotesize{Cmax}}}$ level.

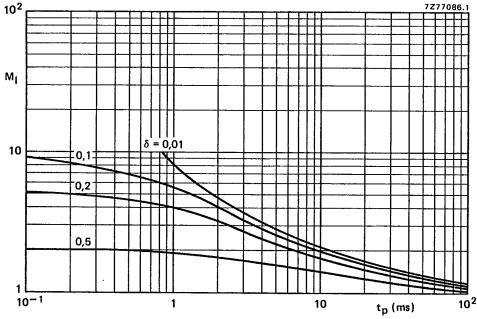


Fig. 13 S.B. current multiplying factor at the $\rm V_{\hbox{\footnotesize CEO}}$ 100 V and 60 V level.

/ April 1981 **739**

T-33-29

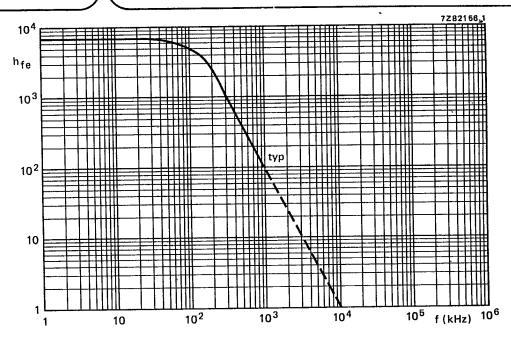


Fig. 14 Small-signal current gain at $I_C = 3 A$; $V_{CE} = 3 V$.

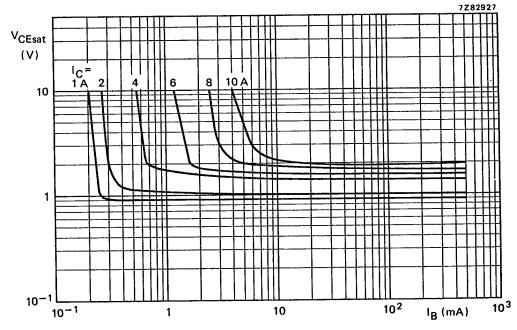


Fig. 15 Typical values collector-emitter saturation voltage at $T_i = 25$ °C.

740