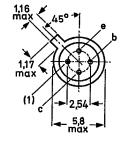
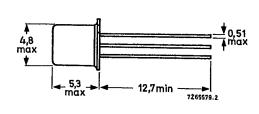
N-P-N H.F. WIDEBAND TRANSISTOR

N-P-N transistor in TO-72 metal envelope with insulated electrodes and a shield lead connected to the case. The 2N918 is primarily intended for low power amplifiers and oscillators in the v.h.f. and u.h.f. ranges for industrial service.


QUICK REFERENCE DATA


Collector-base voltage (open emitter)	V _{CBO}	max.	30 V
Collector-emitter voltage (open base)	V _{CEO}	max.	15 V
Collector current (d.c.)	lc	max.	50 mA
Total power dissipation up to $T_{amb} = 25$ °C	P _{tot}	max.	200 mW
Junction temperature	Tį	max.	200 °C
Transition frequency $I_C = 6 \text{ mA; } V_{CE} = 10 \text{ V}$	f r	min.	900 MHz
Maximum unilateralized power gain IC = 6 mA; VCE = 12 V; f = 200 MHz	GUM	typ.	36 dB
Noise figure at f = 60 MHz I_C = 1 mA; V_{CE} = 6 V; Z_S = 400 Ω	F	max.	6,0 dB

MECHANICAL DATA

Fig. 1 TO-72,

Dimensions in mm

(1) = shield lead (connected to case). Accessories: 56246 (distance disc).

November 1986

677

T-31-15

RATIN	GS	
-------	----	--

Limiting values in accordance with the Absolute I	Maximum Sys	tem (IEC 134)			
Collector-base voltage (open emitter)		V _{CBO}	max.	30	٧
Collector-emitter voltage (open base)	*	V _{CEO}	max.	15	٧
Emitter-base voltage (open collector)		VEBO	max.	3	٧
Collector current (d.c.)		lc	max.	50	mΑ
Total power dissipation up to T _{amb} = 25 °C		P _{tot}	max.	200	mW
Storage temperature		T_{stg}	-65 to +	200	oC
Junction temperature		Тj	max.	200	oC
THERMAL RESISTANCE					
From junction to ambient in free air	-	R _{th j-a}	=	880	K/W
From junction to case		R _{th} i-c	=	580	K/W

678

November 1986

CHARACTERISTICS

T _j = 25 ^o C unless otherwise specified. All measurements taken with u	ngrounded sh	ield lead	I.	
Collector cut-off current				
$I_E = 0; V_{CB} = 15 \text{ V}$	Ісво	max.	10	nΑ
$I_E = 0$; $V_{CB} = 15 \text{ V}$; $T_j = 150 \text{ °C}$	СВО	max.	1	μΑ
Saturation voltages	V			
$I_C = 10 \text{ mA}$; $I_B = 1 \text{ mA}$	V _{CEsat}	max. max.	0,4	V
D.C. current gain	VBEsat	illax.	•	V
IC = 3 mA; VCF = 1 V	ham	min.	20	
Collector capacitance at f = 140 kHz	pEE	111111.	20	
I _E = I _e = 0; V _{CR} = 10 V	C		17	F
IE = Ie = 0; VCB = 0	C _C	max. max.	1,7 3.0	
Emitter capacitance at f = 140 kHz	OC.	max.	0,0	Ρı
I _C = I _c = 0; V _{FB} = 0,5 V	Ce	max.	2,0	n E
Transition frequency	Oe	max,	2,0	рι
I _C = 6 mA; V _C F = 10 V*	f_{T}	min.	ดกก	MHz
Noise figure at f = 60 MHz	'1		300	1411 12
$I_{C} = 1 \text{ mA; } V_{CE} = 6 \text{ V; } Z_{S} = 400 \Omega; T_{amb} = 25 \text{ °C}$	F	max.	6,0	ЧB
Oscillator power output at f = 500 MHz	•	max,	0,0	ub
-1 _E = 8 mA; V _{CB} = 15 V; T _{amb} = 25 °C	Po	min.	30	mW
Maximum unilateralised power gain	٠٥		30	11144
$G_{UM} = \frac{ y_{fe} ^2}{4_{gie}g_{ge}}$				
4gie ^g oe				
$I_C = 6 \text{ mA}$; $V_{CE} = 12 \text{ V}$; $f = 200 \text{ MHz}$; $T_{amb} = 25 \text{ °C}$	GUM	typ.	36	dB
	· · · ·			

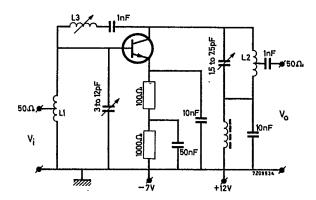
November 1986

679

^{*} JEDEC registration: I_C = 4 mA; V_{CE} = 10 V, f_T > 600 MHz.

T-31-15

CHARACTERISTICS (continued)


Available power gain at f = 200 MHz I_C = 6 mA; V_{CE} = 12 V; T_{amb} = 25 ^{o}C

 G_p

min. 15 dB

Basic circuit for measuring the available neutralised power gain (Fig. 2)

Grounded shield lead

L1 = 3,5 turns tinned Cu wire, 1,3 mm d = 8 mm; length = 11 mm Tap at ≈ 2 turns from earth side

L2 = 8 turns tinned Cu wire, 1,3 mm d = 3 mm; length = 22 mm

Tap at 1 turn from earth side

 $L3 = 0.4 \text{ to } 0.65 \,\mu\text{H}$

680 November 1986